Menu Close

Question-82243




Question Number 82243 by M±th+et£s last updated on 19/Feb/20
Answered by mind is power last updated on 19/Feb/20
observation  ∀k∈N ,∀x∈R_+   1....  x^k −kx+k−1≥0  f(x)=x^k −kx+k−1  f′(x)=0⇔x=1  f(1)=0≥0⇒f(x)≥0,∀x∈R_+    ((n),(2) )=(n/2)(n−1)=Σ_(k=1) ^n (k−1)  Σ_(i=1) ^n ix_i ≤ ((( n)),(( 2)) )+Σ_(i=1) ^n x_i ^i ⇔0≤Σ_(i=1) ^n (i−1)+Σ_(i=1) ^n x_i ^i −Σ_(i=1) ^n ix_i     ⇔0≤Σ_(i=1) ^n (x_i ^i −ix_i +i−1)  by  1 x_i ^i −ix_i +i−1≥0  ⇒Σ_(i=1) ^n (x_i ^i −ix_i +i−1)≥Σ_(i=1) ^n (0)=0   ⇔Σ_(i=1) ^n ix_i ≤Σ_(i=1) ^n x_i ^i + ((( n)),(( 2)) )
$${observation} \\ $$$$\forall{k}\in\mathbb{N}\:,\forall{x}\in\mathbb{R}_{+} \\ $$$$\mathrm{1}…. \\ $$$${x}^{{k}} −{kx}+{k}−\mathrm{1}\geqslant\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{{k}} −{kx}+{k}−\mathrm{1} \\ $$$${f}'\left({x}\right)=\mathrm{0}\Leftrightarrow{x}=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0}\geqslant\mathrm{0}\Rightarrow{f}\left({x}\right)\geqslant\mathrm{0},\forall{x}\in\mathbb{R}_{+} \\ $$$$\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}=\frac{{n}}{\mathrm{2}}\left({n}−\mathrm{1}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}−\mathrm{1}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ix}_{{i}} \leqslant\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix}+\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{{i}} \Leftrightarrow\mathrm{0}\leqslant\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}−\mathrm{1}\right)+\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{{i}} −\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ix}_{{i}} \\ $$$$ \\ $$$$\Leftrightarrow\mathrm{0}\leqslant\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({x}_{{i}} ^{{i}} −{ix}_{{i}} +{i}−\mathrm{1}\right) \\ $$$${by}\:\:\mathrm{1}\:{x}_{{i}} ^{{i}} −{ix}_{{i}} +{i}−\mathrm{1}\geqslant\mathrm{0} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({x}_{{i}} ^{{i}} −{ix}_{{i}} +{i}−\mathrm{1}\right)\geqslant\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{0}\right)=\mathrm{0}\: \\ $$$$\Leftrightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ix}_{{i}} \leqslant\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{{i}} +\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix} \\ $$$$ \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 19/Feb/20
nice solution sir thank you
$${nice}\:{solution}\:{sir}\:{thank}\:{you} \\ $$
Commented by mind is power last updated on 20/Feb/20
withe pleasur
$${withe}\:{pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *