Menu Close

Question-82404




Question Number 82404 by jagoll last updated on 21/Feb/20
Commented by jagoll last updated on 21/Feb/20
may be some one help me
$${may}\:{be}\:{some}\:{one}\:{help}\:{me} \\ $$
Commented by mr W last updated on 21/Feb/20
i think the minimum is when A is  at the origin and D=(−1,1),B=(1,1).  the minimum area is 2.
$${i}\:{think}\:{the}\:{minimum}\:{is}\:{when}\:{A}\:{is} \\ $$$${at}\:{the}\:{origin}\:{and}\:{D}=\left(−\mathrm{1},\mathrm{1}\right),{B}=\left(\mathrm{1},\mathrm{1}\right). \\ $$$${the}\:{minimum}\:{area}\:{is}\:\mathrm{2}. \\ $$
Commented by jagoll last updated on 21/Feb/20
point C sir ?
$${point}\:{C}\:{sir}\:? \\ $$
Commented by jagoll last updated on 21/Feb/20
does mean the point C must  lie on y−axis
$${does}\:{mean}\:{the}\:{point}\:{C}\:{must} \\ $$$${lie}\:{on}\:{y}−{axis} \\ $$
Commented by mr W last updated on 21/Feb/20
my understanding is that three vertices   should lie on the parabola and the   fourth vextex not. whether the fourth  vertex is outside or inside of the  parabola, it doesn′t matter. but this  is your question. what do you mean?  should the fourth vertex only outside  of the parabola or it doesn′t matter?
$${my}\:{understanding}\:{is}\:{that}\:{three}\:{vertices}\: \\ $$$${should}\:{lie}\:{on}\:{the}\:{parabola}\:{and}\:{the}\: \\ $$$${fourth}\:{vextex}\:{not}.\:{whether}\:{the}\:{fourth} \\ $$$${vertex}\:{is}\:{outside}\:{or}\:{inside}\:{of}\:{the} \\ $$$${parabola},\:{it}\:{doesn}'{t}\:{matter}.\:{but}\:{this} \\ $$$${is}\:{your}\:{question}.\:{what}\:{do}\:{you}\:{mean}? \\ $$$${should}\:{the}\:{fourth}\:{vertex}\:{only}\:{outside} \\ $$$${of}\:{the}\:{parabola}\:{or}\:{it}\:{doesn}'{t}\:{matter}? \\ $$
Commented by jagoll last updated on 21/Feb/20
if according to my understanding  the fourth point is outside parabola.  dish according to the picture  shown in the problem. sir
$${if}\:{according}\:{to}\:{my}\:{understanding} \\ $$$${the}\:{fourth}\:{point}\:{is}\:{outside}\:{parabola}. \\ $$$${dish}\:{according}\:{to}\:{the}\:{picture} \\ $$$${shown}\:{in}\:{the}\:{problem}.\:{sir} \\ $$
Commented by mr W last updated on 21/Feb/20
solution for the case that the fourth  vertex lies outside the parabola  see below.
$${solution}\:{for}\:{the}\:{case}\:{that}\:{the}\:{fourth} \\ $$$${vertex}\:{lies}\:{outside}\:{the}\:{parabola} \\ $$$${see}\:{below}. \\ $$
Answered by mr W last updated on 21/Feb/20
A(−a,a^2 ) with a>0  D(d,d^2 ) with d>0  B(b,b^2 ) with b^2 <d^2   say eqn. of AD is y=a^2 +m(x+a)  then eqn. of AD is y=a^2 −(1/m)(x+a)  d^2 =a^2 +m(d+a)  d^2 −md−a^2 −ma=0  ⇒d=a+m  similarly  ⇒b=a−(1/m)  AD^2 =(d+a)^2 +(d^2 −a^2 )^2   AD^2 =(1+m^2 )(2a+m)^2   similarly  AB^2 =(1+(1/m^2 ))(2a−(1/m))^2   AB=AD  ⇒(1+(1/m^2 ))(2a−(1/m))^2 =(1+m^2 )(2a+m)^2   ⇒(2am−1)^2 =m^4 (2a+m)^2   side length of square l=(2a+m)(√(1+m^2 ))    we get (through graphic method):  at m≈0.3821and a≈2.2358  l_(min) ≈5.1961
$${A}\left(−{a},{a}^{\mathrm{2}} \right)\:{with}\:{a}>\mathrm{0} \\ $$$${D}\left({d},{d}^{\mathrm{2}} \right)\:{with}\:{d}>\mathrm{0} \\ $$$${B}\left({b},{b}^{\mathrm{2}} \right)\:{with}\:{b}^{\mathrm{2}} <{d}^{\mathrm{2}} \\ $$$${say}\:{eqn}.\:{of}\:{AD}\:{is}\:{y}={a}^{\mathrm{2}} +{m}\left({x}+{a}\right) \\ $$$${then}\:{eqn}.\:{of}\:{AD}\:{is}\:{y}={a}^{\mathrm{2}} −\frac{\mathrm{1}}{{m}}\left({x}+{a}\right) \\ $$$${d}^{\mathrm{2}} ={a}^{\mathrm{2}} +{m}\left({d}+{a}\right) \\ $$$${d}^{\mathrm{2}} −{md}−{a}^{\mathrm{2}} −{ma}=\mathrm{0} \\ $$$$\Rightarrow{d}={a}+{m} \\ $$$${similarly} \\ $$$$\Rightarrow{b}={a}−\frac{\mathrm{1}}{{m}} \\ $$$${AD}^{\mathrm{2}} =\left({d}+{a}\right)^{\mathrm{2}} +\left({d}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${AD}^{\mathrm{2}} =\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left(\mathrm{2}{a}+{m}\right)^{\mathrm{2}} \\ $$$${similarly} \\ $$$${AB}^{\mathrm{2}} =\left(\mathrm{1}+\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\right)\left(\mathrm{2}{a}−\frac{\mathrm{1}}{{m}}\right)^{\mathrm{2}} \\ $$$${AB}={AD} \\ $$$$\Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\right)\left(\mathrm{2}{a}−\frac{\mathrm{1}}{{m}}\right)^{\mathrm{2}} =\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left(\mathrm{2}{a}+{m}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}{am}−\mathrm{1}\right)^{\mathrm{2}} ={m}^{\mathrm{4}} \left(\mathrm{2}{a}+{m}\right)^{\mathrm{2}} \\ $$$${side}\:{length}\:{of}\:{square}\:{l}=\left(\mathrm{2}{a}+{m}\right)\sqrt{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$$ \\ $$$${we}\:{get}\:\left({through}\:{graphic}\:{method}\right): \\ $$$${at}\:{m}\approx\mathrm{0}.\mathrm{3821}{and}\:{a}\approx\mathrm{2}.\mathrm{2358} \\ $$$${l}_{{min}} \approx\mathrm{5}.\mathrm{1961} \\ $$
Commented by mr W last updated on 21/Feb/20
Commented by mr W last updated on 21/Feb/20
Commented by mr W last updated on 21/Feb/20
analytical (exact) solution:  from (2am−1)^2 =m^4 (2a+m)^2   ⇒m^2 (2a+m)=±(2am−1)  ⇒2m(m±1)a=±1−m^3   ⇒a=((1−m^3 )/(2m(m+1)))  (this is for the case  that the fourth vertex lies inside)  ⇒a=((−1−m^3 )/(2m(m−1)))  (this is for our case)  l=(2a+m)(√(1+m^2 ))  ⇒l=(((1+m^2 )^(3/2) )/(m(1−m)))  (dl/dm)=((3(1+m^2 )^(1/2) )/((1−m)))−(((1+m^2 )^(3/2) (1−2m))/(m^2 (1−m)^2 ))=0  (((1+m^2 )(1−2m))/(m^2 (1−m)))=3  ⇒m^3 −2m^2 −2m+1=0  ⇒(m+1)(m^2 −3m+1)=0  ⇒m=−1  ⇒m=((3+(√5))/2)≈0.3820  ⇒m=((3−(√5))/2)  ⇒a=((1+m^3 )/(2m(1−m)))=2.2361  ⇒l_(min) =(((1+m^2 )^(3/2) )/(m(1−m)))=5.1962
$${analytical}\:\left({exact}\right)\:{solution}: \\ $$$${from}\:\left(\mathrm{2}{am}−\mathrm{1}\right)^{\mathrm{2}} ={m}^{\mathrm{4}} \left(\mathrm{2}{a}+{m}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{m}^{\mathrm{2}} \left(\mathrm{2}{a}+{m}\right)=\pm\left(\mathrm{2}{am}−\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{2}{m}\left({m}\pm\mathrm{1}\right){a}=\pm\mathrm{1}−{m}^{\mathrm{3}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}−{m}^{\mathrm{3}} }{\mathrm{2}{m}\left({m}+\mathrm{1}\right)}\:\:\left({this}\:{is}\:{for}\:{the}\:{case}\right. \\ $$$$\left.{that}\:{the}\:{fourth}\:{vertex}\:{lies}\:{inside}\right) \\ $$$$\Rightarrow{a}=\frac{−\mathrm{1}−{m}^{\mathrm{3}} }{\mathrm{2}{m}\left({m}−\mathrm{1}\right)}\:\:\left({this}\:{is}\:{for}\:{our}\:{case}\right) \\ $$$${l}=\left(\mathrm{2}{a}+{m}\right)\sqrt{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$$\Rightarrow{l}=\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{{m}\left(\mathrm{1}−{m}\right)} \\ $$$$\frac{{dl}}{{dm}}=\frac{\mathrm{3}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}−{m}\right)}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}−\mathrm{2}{m}\right)}{{m}^{\mathrm{2}} \left(\mathrm{1}−{m}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{2}{m}\right)}{{m}^{\mathrm{2}} \left(\mathrm{1}−{m}\right)}=\mathrm{3} \\ $$$$\Rightarrow{m}^{\mathrm{3}} −\mathrm{2}{m}^{\mathrm{2}} −\mathrm{2}{m}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left({m}+\mathrm{1}\right)\left({m}^{\mathrm{2}} −\mathrm{3}{m}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{m}=−\mathrm{1} \\ $$$$\Rightarrow{m}=\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{3820} \\ $$$$\Rightarrow{m}=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}+{m}^{\mathrm{3}} }{\mathrm{2}{m}\left(\mathrm{1}−{m}\right)}=\mathrm{2}.\mathrm{2361} \\ $$$$\Rightarrow{l}_{{min}} =\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{{m}\left(\mathrm{1}−{m}\right)}=\mathrm{5}.\mathrm{1962} \\ $$
Commented by mr W last updated on 21/Feb/20
Commented by mr W last updated on 21/Feb/20
Commented by mr W last updated on 21/Feb/20
Commented by jagoll last updated on 21/Feb/20
yes sir thank you
$${yes}\:{sir}\:{thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *