Menu Close

Question-82410




Question Number 82410 by naka3546 last updated on 21/Feb/20
Commented by naka3546 last updated on 21/Feb/20
find  real  solution  of  the  equation  above
$${find}\:\:{real}\:\:{solution}\:\:{of}\:\:{the}\:\:{equation}\:\:{above} \\ $$
Answered by MJS last updated on 21/Feb/20
x^4 −2(a+3)x^2 +4x+a(a+2)=0  (x^2 −2x−a)(x^2 +2x−(a+2))=0  x_(1, 2) =1±(√(a+1))  x_(3, 4) =−1±(√(a+3))  ⇒ a≥−1 to get only real solutions
$${x}^{\mathrm{4}} −\mathrm{2}\left({a}+\mathrm{3}\right){x}^{\mathrm{2}} +\mathrm{4}{x}+{a}\left({a}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}{x}−{a}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\left({a}+\mathrm{2}\right)\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1},\:\mathrm{2}} =\mathrm{1}\pm\sqrt{{a}+\mathrm{1}} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} =−\mathrm{1}\pm\sqrt{{a}+\mathrm{3}} \\ $$$$\Rightarrow\:{a}\geqslant−\mathrm{1}\:\mathrm{to}\:\mathrm{get}\:\mathrm{only}\:\mathrm{real}\:\mathrm{solutions} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *