Question Number 82485 by naka3546 last updated on 21/Feb/20
Commented by abdomathmax last updated on 21/Feb/20
$${let}\:{f}\left({x}\right)=\frac{\mathrm{6}}{{t}^{\mathrm{2}} }−\frac{{sin}\left(\mathrm{6}{t}\right)}{{t}^{\mathrm{3}} {cos}^{\mathrm{2}} \left(\mathrm{3}{t}\right)}\:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left\{\mathrm{6}−\frac{{sin}\left(\mathrm{6}{t}\right)}{{t}\:{cos}^{\mathrm{2}} \left(\mathrm{3}{t}\right)}\right\}\:{we}\:{have}\: \\ $$$${sin}\left(\mathrm{6}{t}\right)\sim\mathrm{6}{t} \\ $$$${cos}^{\mathrm{2}} \left(\mathrm{3}{t}\right)=\frac{\mathrm{1}+{cos}\left(\mathrm{6}{t}\right)}{\mathrm{2}}\:\sim\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{36}{t}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{9}{t}^{\mathrm{2}} \:=\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} \:\Rightarrow \\ $$$${f}\left({x}\right)\sim\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left\{\mathrm{6}−\frac{\mathrm{6}{t}}{{t}\left(\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} \right)}\right\}\:=\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left\{\mathrm{6}−\frac{\mathrm{6}}{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{6}}{{t}^{\mathrm{2}} }×\frac{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} \right)}\:=\frac{−\mathrm{54}}{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} }\:\rightarrow−\mathrm{54}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)=−\mathrm{54} \\ $$
Commented by jagoll last updated on 22/Feb/20
$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}{t}\:\mathrm{cos}\:^{\mathrm{2}} {t}\:−\mathrm{sin}\:\mathrm{6}{t}}{{t}^{\mathrm{3}} \:\mathrm{cos}\:^{\mathrm{2}} {t}}\:=\: \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} {t}}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6cos}\:^{\mathrm{2}} {t}−\mathrm{6}{t}\mathrm{sin}\:\mathrm{2}{t}−\mathrm{6cos}\:\mathrm{6}{t}}{\mathrm{3}{t}^{\mathrm{2}} } \\ $$$$=\:\mathrm{1}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{6sin}\:\mathrm{2}{t}−\left(\mathrm{6sin}\:\mathrm{2}{t}+\mathrm{12}{t}\mathrm{cos}\:\mathrm{2}{t}\right)+\mathrm{36sin}\:\mathrm{6}{t}}{\mathrm{6}{t}} \\ $$$$=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{24cos}\:\mathrm{2}{t}−\left(\mathrm{12cos}\:\mathrm{2}{t}−\mathrm{24}{t}\mathrm{sin}\:\mathrm{2}{t}\right)+\mathrm{216cos}\:\mathrm{6}{t}}{\mathrm{6}} \\ $$$$=\:\frac{−\mathrm{36}+\mathrm{216}}{\mathrm{6}}\:=\:−\mathrm{6}+\:\mathrm{36}\:=\:\mathrm{30}? \\ $$
Commented by naka3546 last updated on 22/Feb/20
$$\mathrm{cos}\:{t}\:\:{or}\:\:\mathrm{cos}\:\mathrm{3}{t}\:? \\ $$
Commented by john santu last updated on 22/Feb/20
$${this}\:{answer}\:{is}\:−\mathrm{18} \\ $$
Answered by john santu last updated on 22/Feb/20
$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}}{{t}^{\mathrm{2}} }\:−\:\frac{\mathrm{2sin}\:\mathrm{3}{t}\:\mathrm{cos}\:\mathrm{3}{t}}{{t}^{\mathrm{3}} \:\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{t}}\:= \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}}{{t}^{\mathrm{2}} }\:−\:\frac{\mathrm{2tan}\:\mathrm{3}{t}}{{t}^{\mathrm{3}} }\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}{t}−\mathrm{2tan}\:\mathrm{3}{t}}{{t}^{\mathrm{3}} } \\ $$$$=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}−\mathrm{6sec}\:^{\mathrm{2}} \mathrm{3}{t}}{\mathrm{3}{t}^{\mathrm{2}} }\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{t}}\right)}{{t}^{\mathrm{2}} } \\ $$$$=\mathrm{2}×\:\underset{{t}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{t}−\mathrm{1}}{{t}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{t}}\:=\:\mathrm{2}×\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{t}}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{t}}{{t}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:×\:\mathrm{1}\:×\:\left(−\mathrm{9}\right)\:=\:−\mathrm{18} \\ $$
Answered by Henri Boucatchou last updated on 22/Feb/20
$${At}\:\:{V}\left(\mathrm{0}\right),\:\:{sin}\mathrm{6}{t}\sim\mathrm{6}{t},\:\frac{\mathrm{6}}{{t}^{\mathrm{2}} }−\frac{{sin}\mathrm{6}{t}}{{t}^{\mathrm{3}} \left(\mathrm{1}−{sin}^{\mathrm{2}} \mathrm{3}{t}\right)}\sim\frac{\mathrm{6}}{{t}^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\left(\mathrm{3}{t}\right)^{\mathrm{2}} }\right) \\ $$$$\sim\frac{\mathrm{6}}{{t}^{\mathrm{2}} }\left(\frac{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} }\right)\sim−\mathrm{54}\frac{\mathrm{1}}{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(\frac{\mathrm{6}}{{t}^{\mathrm{2}} }−\frac{{sin}\mathrm{6}{t}}{{t}^{\mathrm{3}} {cos}^{\mathrm{2}} {t}}\right)=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(−\mathrm{54}\frac{\mathrm{1}}{\mathrm{1}−\mathrm{9}{t}^{\mathrm{2}} }\right)=−\mathrm{54} \\ $$
Commented by john santu last updated on 22/Feb/20
$${not}\:{correct}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{t}\:\sim\:\mathrm{1}−\left(\mathrm{3}{t}\right)^{\mathrm{2}} \\ $$
Commented by Henri Boucatchou last updated on 22/Feb/20
$${Sorry},\:{take}\:{t}={x} \\ $$