Menu Close

Question-82520




Question Number 82520 by peter frank last updated on 22/Feb/20
Commented by mathmax by abdo last updated on 22/Feb/20
let S_n =Σ_(k=0) ^n  2^k  cos(2kθ) ⇒S_n =Re(Σ_(k=0) ^n  2^k  e^(i2kθ) )  =Re(Σ_(k=0) ^n (2 e^(i2θ) )^k )  but we have  Σ_(k=0) ^n (2e^(2iθ) )^k  =((1−(2e^(2iθ) )^(n+1) )/(1−2e^(2iθ) )) =((1−2^(n+1)  e^(2(n+1)iθ) )/(1−2cos(2θ)−2isin(2θ)))  =(((1−2cos(2θ)+2isin(2θ))(1−2^(n+1) e^(2(n+1)iθ) ))/((1−2cos(2θ))^2  +4sin^2 (2θ)))  =(((1−2cos(2θ)+2isin(2θ)){1−2^(n+1) cos2(n+1)θ−2^(n+1) isin2(n+1)θ})/((1−2cos(2θ))^2  +4sin^2 (2θ)))  =(((1−2cos(2θ))(1−2^(n+1) cos(2(n+1)θ)−i(1−2cos(2θ))2^(n+1) sin2(n+1)θ+2isin(2θ)(1−2^(n+1) cos2(n+1)θ)+2^(n+2) sin(2θ)sin2(n+1)θ)/((1−2cos(2θ))^2  +4sin^2 (2θ)))  ⇒S_n =(((1−2cos(2θ))(1−2^(n+1) cos(2(n+1)θ)+2^(n+2) sin(2θ)sin2(n+1)θ)/(5−4cos(2θ)))
letSn=k=0n2kcos(2kθ)Sn=Re(k=0n2kei2kθ)=Re(k=0n(2ei2θ)k)butwehavek=0n(2e2iθ)k=1(2e2iθ)n+112e2iθ=12n+1e2(n+1)iθ12cos(2θ)2isin(2θ)=(12cos(2θ)+2isin(2θ))(12n+1e2(n+1)iθ)(12cos(2θ))2+4sin2(2θ)=(12cos(2θ)+2isin(2θ)){12n+1cos2(n+1)θ2n+1isin2(n+1)θ}(12cos(2θ))2+4sin2(2θ)=(12cos(2θ))(12n+1cos(2(n+1)θ)i(12cos(2θ))2n+1sin2(n+1)θ+2isin(2θ)(12n+1cos2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ(12cos(2θ))2+4sin2(2θ)Sn=(12cos(2θ))(12n+1cos(2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ54cos(2θ)
Answered by mr W last updated on 22/Feb/20
z=2(cos θ+i sin θ)=2e^(iθ)   z^k =2^k (cos kθ+i sin kθ)=(2e^(iθ) )^k   z^0 +z^1 +z^2 +...+z^n =Σ_(k=0) ^n (2e^(iθ) )^k  ← sum of GP  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(((2e^(iθ) )^(n+1) −1)/(2e^(iθ) −1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) e^(i(n+1)θ) −1)/(2e^(iθ) −1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) [cos (n+1)θ+i sin (n+1)θ]−1)/(2(cos θ+i sin θ)−1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(({[2^(n+1) cos (n+1)θ−1]+i [2^(n+1) sin (n+1)θ]}[(2cos θ−1)−i sin θ])/([(2cos θ−1)+i sin θ][(2cos θ−1)−i sin θ]))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(({[2^(n+1) cos (n+1)θ−1](2cos θ−1)+2^(n+1) sin (n+1)θ sin θ}+i {[2^(n+1) sin (n+1)θ](2cos θ−1)−[2^(n+1) cos (n+1)θ−1]sin θ})/((2cos θ−1)^2 +sin^2  θ))  ⇒Σ_(k=0) ^n 2^k cos (kθ)=(([2^(n+1) cos (n+1)θ−1](2cos θ−1)+2^(n+1) sin θ sin (n+1)θ)/((2cos θ−1)^2 +sin^2  θ))    ⇒Σ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) (2 cos θ−1) sin (n+1)θ−[2^(n+1) cos (n+1)θ−1]sin θ)/((2cos θ−1)^2 +sin^2  θ))
z=2(cosθ+isinθ)=2eiθzk=2k(coskθ+isinkθ)=(2eiθ)kz0+z1+z2++zn=nk=0(2eiθ)ksumofGPnk=02kcos(kθ)+ink=02ksin(kθ)=(2eiθ)n+112eiθ1nk=02kcos(kθ)+ink=02ksin(kθ)=2n+1ei(n+1)θ12eiθ1nk=02kcos(kθ)+ink=02ksin(kθ)=2n+1[cos(n+1)θ+isin(n+1)θ]12(cosθ+isinθ)1nk=02kcos(kθ)+ink=02ksin(kθ)={[2n+1cos(n+1)θ1]+i[2n+1sin(n+1)θ]}[(2cosθ1)isinθ][(2cosθ1)+isinθ][(2cosθ1)isinθ]nk=02kcos(kθ)+ink=02ksin(kθ)={[2n+1cos(n+1)θ1](2cosθ1)+2n+1sin(n+1)θsinθ}+i{[2n+1sin(n+1)θ](2cosθ1)[2n+1cos(n+1)θ1]sinθ}(2cosθ1)2+sin2θnk=02kcos(kθ)=[2n+1cos(n+1)θ1](2cosθ1)+2n+1sinθsin(n+1)θ(2cosθ1)2+sin2θnk=02ksin(kθ)=2n+1(2cosθ1)sin(n+1)θ[2n+1cos(n+1)θ1]sinθ(2cosθ1)2+sin2θ
Commented by peter frank last updated on 22/Feb/20
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *