Question Number 82531 by Power last updated on 22/Feb/20
Commented by abdomathmax last updated on 24/Feb/20
$${I}\:=\int\:\frac{\sqrt{\mathrm{1}−{x}}}{{x}}{dx}\:+\int\:\frac{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{{x}}{dx}\:+\int\:\:\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{{x}}{dx}\:{we}\:{have} \\ $$$$\int\:\:\frac{\sqrt{\mathrm{1}−{x}}}{{x}}{dx}\:\:{changement}\:\sqrt{\mathrm{1}−{x}}={t}\:{give}\mathrm{1}−{x}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}=\mathrm{1}−{t}^{\mathrm{2}} \:\Rightarrow\int\:\:\frac{\sqrt{\mathrm{1}−{x}}}{{x}}{dx}\:=\:\int\:\:\frac{{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\left(−\mathrm{2}{t}\right){dt} \\ $$$$=\int\:\:\:\frac{\mathrm{2}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\mathrm{2}\int\:\frac{{t}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\mathrm{2}\int\:{dt}\:+\mathrm{2}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\mathrm{2}{t}\:+\int\:\left(\frac{\mathrm{1}}{{t}−\mathrm{1}}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}\:=\mathrm{2}{t}+{ln}\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\:+{c} \\ $$$$=\mathrm{2}\sqrt{\mathrm{1}−{x}}+{ln}\mid\frac{\sqrt{\mathrm{1}−{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}+\mathrm{1}}\mid\:+{c} \\ $$$$\int\:\:\frac{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{{x}}{dx}\:=_{{x}=\sqrt{\mathrm{2}}{sint}} \:\:\int\:\:\:\frac{\sqrt{\mathrm{2}}{cost}}{\:\sqrt{\mathrm{2}}{sint}}×\sqrt{\mathrm{2}}{costdt} \\ $$$$=\sqrt{\mathrm{2}}\int\:\:\frac{{cos}^{\mathrm{2}} {t}}{{sint}}{dt}\:=\sqrt{\mathrm{2}}\int\:\:\frac{\mathrm{1}−{sin}^{\mathrm{2}} {t}}{{sint}}{dt} \\ $$$$=\sqrt{\mathrm{2}}\int\:\:\:\frac{{dt}}{{sint}}−\sqrt{\mathrm{2}}\int\:\:{sint}\:{dt}\:\:\:\: \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\sqrt{\mathrm{2}}\int\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}×\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:+\sqrt{\mathrm{2}}{cost}\:\:+{c}^{'} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid{tan}\left(\frac{{t}}{\mathrm{2}}\right)\mid+\sqrt{\mathrm{2}}\sqrt{\mathrm{1}−\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }\:+{c}^{'} \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)\right)\mid+\sqrt{\mathrm{2}}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\:+{c} \\ $$$$….{be}\:{continued}… \\ $$
Answered by TANMAY PANACEA last updated on 22/Feb/20
$$\int\frac{\mathrm{1}−{x}}{{x}\sqrt{\mathrm{1}−{x}}}{dx}+\int\frac{\mathrm{2}−{x}^{\mathrm{2}} }{{x}\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{dx}+\int\frac{\mathrm{4}−{x}^{\mathrm{4}} }{{x}\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{dx} \\ $$$${I}_{\mathrm{1}} =\int\frac{\mathrm{1}−{x}}{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$${t}^{\mathrm{2}} =\mathrm{1}−{x} \\ $$$$\mathrm{2}{tdt}=−{dx} \\ $$$$\int\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}−{t}^{\mathrm{2}} \right){t}}×−\mathrm{2}{tdt} \\ $$$$\mathrm{2}\int\frac{\mathrm{1}−{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{2}\int{dt}−\mathrm{2}\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\mathrm{2}\int{dt}−\left[\int\frac{{dt}}{\mathrm{1}+{t}}+\int\frac{{dt}}{\mathrm{1}−{t}}\right] \\ $$$$\mathrm{2}\int{dt}−\int\frac{{dt}}{\mathrm{1}+{t}}+\int\frac{{dt}}{{t}−\mathrm{1}} \\ $$$$\mathrm{2}{t}+{ln}\left(\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\right)+{c}_{\mathrm{1}} \\ $$$$\sqrt{\mathrm{1}−{x}}\:+{ln}\left(\frac{\sqrt{\mathrm{1}−{x}}\:−\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}\:+\mathrm{1}}\right)+{c}_{\mathrm{1}} \\ $$$${I}_{\mathrm{2}} =\int\frac{\mathrm{2}−{x}^{\mathrm{2}} }{{x}\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$$\mathrm{2}\int\frac{{xdx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}−\int\frac{{xdx}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$${k}^{\mathrm{2}} =\mathrm{2}−{x}^{\mathrm{2}} \rightarrow{kdk}=−{xdx} \\ $$$$\mathrm{2}\int\frac{−{kdk}}{\left(\mathrm{2}−{k}^{\mathrm{2}} \right)}+\int\frac{{kdk}}{{k}} \\ $$$$\int\frac{{d}\left(\mathrm{2}−{k}^{\mathrm{2}} \right)}{\mathrm{2}−{k}^{\mathrm{2}} }+\int{dk} \\ $$$${ln}\left(\mathrm{2}−{k}^{\mathrm{2}} \right)+{k}+{c}_{\mathrm{2}} \\ $$$${ln}\left({x}^{\mathrm{2}} \right)+\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }\:+{c}_{\mathrm{2}} \\ $$$${I}_{\mathrm{3}} =\int\frac{\mathrm{4}−{x}^{\mathrm{4}} }{{x}\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{dx} \\ $$$$\int\frac{\mathrm{4}{xdx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}−\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{dx} \\ $$$$\mathrm{2}\int\frac{{d}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{x}^{\mathrm{2}} ×{d}\left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }} \\ $$$$\mathrm{2}\int\frac{{dp}}{{p}\sqrt{\mathrm{4}−{p}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{pdp}}{\:\sqrt{\mathrm{4}−{p}^{\mathrm{2}} }}\:\:\:\:\left[\:{p}={x}^{\mathrm{2}} \right] \\ $$$$\mathrm{2}\int\frac{{pdp}}{{p}^{\mathrm{2}} \sqrt{\mathrm{4}−{p}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{pdp}}{\:\sqrt{\mathrm{4}−{p}^{\mathrm{2}} }} \\ $$$${a}^{\mathrm{2}} =\mathrm{4}−{p}^{\mathrm{2}} \rightarrow\mathrm{2}{ada}=−\mathrm{2}{pdp}\bigstar\:\:\left[{a}^{\mathrm{2}} =\mathrm{4}−{p}^{\mathrm{2}} =\mathrm{4}−{x}^{\mathrm{4}} \right] \\ $$$$\mathrm{2}\int\frac{−{ada}}{\left(\mathrm{4}−{a}^{\mathrm{2}} \right){a}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{−{ada}}{{a}} \\ $$$$−\mathrm{2}\int\frac{{da}}{\left(\mathrm{2}+{a}\right)\left(\mathrm{2}−{a}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\int{da} \\ $$$$\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}+{a}+\mathrm{2}−{a}}{\left(\mathrm{2}+{a}\right)\left(\mathrm{2}−{a}\right)}{da}+\frac{\mathrm{1}}{\mathrm{2}}\int{da} \\ $$$$\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{da}}{\mathrm{2}−{a}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{da}}{\mathrm{2}+{a}}+\frac{\mathrm{1}}{\mathrm{2}}\int{da} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{da}}{{a}−\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{da}}{{a}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int{da} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{{a}−\mathrm{2}}{{a}+\mathrm{2}}\right)+\frac{{a}}{\mathrm{2}}+{c}_{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }\:−\mathrm{2}}{\:\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }\:+\mathrm{2}}\right)+\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{\mathrm{2}}+{c}_{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 22/Feb/20
$${thank}\:{you} \\ $$
Commented by Power last updated on 22/Feb/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by TANMAY PANACEA last updated on 22/Feb/20
$${most}\:{welcome}\:{both}\:{of}\:{you}\:{sir}… \\ $$