Question Number 82573 by Power last updated on 22/Feb/20

Commented by Tony Lin last updated on 22/Feb/20
![let x=asecθ, dx=asecθtanθdθ ⇒secθ=(x/a), tanθ=((√(x^2 −a^2 ))/a) a^2 ∫tan^2 θsecθdθ =a^2 ∫(sec^2 θ−1)secθdθ =a^2 [∫sec^3 θdθ−∫secθdθ] ∫sec^3 dθ =secθtanθ−∫tan^2 θsecθdθ =secθtanθ−∫(sec^2 θ−1)secθdθ =secθtanθ−∫sec^3 dθ+∫secθdθ ⇒∫sec^3 dθ =(1/2)(secθtanθ+ln∣secθ+tanθ∣)+c ∴a^2 ∫tan^2 θsecθdθ =(1/2)a^2 (secθtanθ−ln∣secθ+tanθ∣)+c =(1/2)(x(√(x^2 −a^2 ))−aln∣x+(√(x^2 −a^2 ))∣)+c](https://www.tinkutara.com/question/Q82581.png)
Commented by mathmax by abdo last updated on 22/Feb/20

Commented by Power last updated on 22/Feb/20

Commented by msup trace by abdo last updated on 22/Feb/20
