Menu Close

Question-82573




Question Number 82573 by Power last updated on 22/Feb/20
Commented by Tony Lin last updated on 22/Feb/20
let x=asecθ, dx=asecθtanθdθ  ⇒secθ=(x/a), tanθ=((√(x^2 −a^2 ))/a)  a^2 ∫tan^2 θsecθdθ  =a^2 ∫(sec^2 θ−1)secθdθ  =a^2 [∫sec^3 θdθ−∫secθdθ]  ∫sec^3 dθ  =secθtanθ−∫tan^2 θsecθdθ  =secθtanθ−∫(sec^2 θ−1)secθdθ  =secθtanθ−∫sec^3 dθ+∫secθdθ  ⇒∫sec^3 dθ  =(1/2)(secθtanθ+ln∣secθ+tanθ∣)+c  ∴a^2 ∫tan^2 θsecθdθ  =(1/2)a^2 (secθtanθ−ln∣secθ+tanθ∣)+c  =(1/2)(x(√(x^2 −a^2 ))−aln∣x+(√(x^2 −a^2 ))∣)+c
letx=asecθ,dx=asecθtanθdθsecθ=xa,tanθ=x2a2aa2tan2θsecθdθ=a2(sec2θ1)secθdθ=a2[sec3θdθsecθdθ]sec3dθ=secθtanθtan2θsecθdθ=secθtanθ(sec2θ1)secθdθ=secθtanθsec3dθ+secθdθsec3dθ=12(secθtanθ+lnsecθ+tanθ)+ca2tan2θsecθdθ=12a2(secθtanθlnsecθ+tanθ)+c=12(xx2a2alnx+x2a2)+c
Commented by mathmax by abdo last updated on 22/Feb/20
A =∫(√(x^2 −a^2 ))dx changement x=ach(t) give  A =∫∣a∣sh(t)a sh(t)dt =a∣a∣∫ sh^2 t dt  =a∣a∣ ∫  ((ch(2t)−1)/2) =((a∣a∣)/2) ∫ ch(2t)dt−((a∣a∣t)/2)  =((a∣a∣)/4)sh(2t)−((a∣a∣)/2)t +c =((a∣a∣)/2)sh(t)ch(t)−((a∣a∣)/2)t +c  =((a∣a∣)/2)(√((x^2 /a^2 )−1))×(x/a) −((a∣a∣)/2) argch((x/a))+C  =((a∣a∣)/(2∣a∣a))x(√(x^2 −a^2 )) −((a∣a∣)/2)ln((x/a)+(√((x^2 /a^2 )−1))) +C  =(x/2)(√(x^2 −a^2  ))−((a∣a∣)/2)ln((x/a)+((√(x^2 −a^2 ))/(∣a∣))) +C
A=x2a2dxchangementx=ach(t)giveA=ash(t)ash(t)dt=aash2tdt=aach(2t)12=aa2ch(2t)dtaat2=aa4sh(2t)aa2t+c=aa2sh(t)ch(t)aa2t+c=aa2x2a21×xaaa2argch(xa)+C=aa2aaxx2a2aa2ln(xa+x2a21)+C=x2x2a2aa2ln(xa+x2a2a)+C
Commented by Power last updated on 22/Feb/20
thanks
thanks
Commented by msup trace by abdo last updated on 22/Feb/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *