Menu Close

Question-83235




Question Number 83235 by peter frank last updated on 28/Feb/20
Commented by peter frank last updated on 28/Feb/20
c help
$${c}\:{help} \\ $$
Commented by john santu last updated on 29/Feb/20
(c) let the circle equation is  (x−p)^2 +(y−q)^2  = r^2   (y−q)^2  = r^2 −x^2 +2px−p^2  (∗)  let vector AB = (x−p+r, y−q )  vector BC = (p+r−x, q−y)  and ∡ABC = θ  BA • BC = (p−r−x).(p+r−x)+(q−y)^2   = p^2 −r^2 −px+rx−px−rx+x^(2 ) +  r^2 −x^2 +2px−p^2  = 0  since BA•BC = 0 , then cos θ = cos (π/2)  therefore we get θ = (π/2)
$$\left(\mathrm{c}\right)\:\mathrm{let}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{equation}\:\mathrm{is} \\ $$$$\left(\mathrm{x}−\mathrm{p}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{q}\right)^{\mathrm{2}} \:=\:\mathrm{r}^{\mathrm{2}} \\ $$$$\left(\mathrm{y}−\mathrm{q}\right)^{\mathrm{2}} \:=\:\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} +\mathrm{2px}−\mathrm{p}^{\mathrm{2}} \:\left(\ast\right) \\ $$$$\mathrm{let}\:\mathrm{vector}\:\mathrm{AB}\:=\:\left(\mathrm{x}−\mathrm{p}+\mathrm{r},\:\mathrm{y}−\mathrm{q}\:\right) \\ $$$$\mathrm{vector}\:\mathrm{BC}\:=\:\left(\mathrm{p}+\mathrm{r}−\mathrm{x},\:\mathrm{q}−\mathrm{y}\right) \\ $$$$\mathrm{and}\:\measuredangle\mathrm{ABC}\:=\:\theta \\ $$$$\mathrm{BA}\:\bullet\:\mathrm{BC}\:=\:\left(\mathrm{p}−\mathrm{r}−\mathrm{x}\right).\left(\mathrm{p}+\mathrm{r}−\mathrm{x}\right)+\left(\mathrm{q}−\mathrm{y}\right)^{\mathrm{2}} \\ $$$$=\:\mathrm{p}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} −\mathrm{px}+\mathrm{rx}−\mathrm{px}−\mathrm{rx}+\mathrm{x}^{\mathrm{2}\:} + \\ $$$$\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} +\mathrm{2px}−\mathrm{p}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\mathrm{since}\:\mathrm{BA}\bullet\mathrm{BC}\:=\:\mathrm{0}\:,\:\mathrm{then}\:\mathrm{cos}\:\theta\:=\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{therefore}\:\mathrm{we}\:\mathrm{get}\:\theta\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *