Menu Close

Question-83524




Question Number 83524 by liki last updated on 03/Mar/20
Commented by liki last updated on 03/Mar/20
...help me plz qns no. 5,7 and 9
$$…{help}\:{me}\:{plz}\:{qns}\:{no}.\:\mathrm{5},\mathrm{7}\:{and}\:\mathrm{9} \\ $$
Commented by liki last updated on 03/Mar/20
...plz help me  .....
$$…{plz}\:{help}\:{me}\:\:….. \\ $$
Answered by Kunal12588 last updated on 03/Mar/20
Commented by Kunal12588 last updated on 03/Mar/20
(dr_2 /dt)=1 cm/s  ,  (dr_1 /dt)=2 cm/s  A_(shaded) =πr_2 ^2 −πr_1 ^2   ⇒A_(shaded) =π(r_2 ^2 −r_1 ^2 )  ⇒(dA/dt)=2π(r_2 ×(dr_1 /dt)−r_1 ×(dr_2 /dt))  ⇒(dA/dt)=2π(r_2 (1)−r_1 (2))  ⇒(dA/dt)=2π(r_2 −2r_1 )  when r_1 =8 cm, r_2 =12 cm  (dA/dt)=2π(12−16)  (dA/dt)=−8π cm/s
$$\frac{{dr}_{\mathrm{2}} }{{dt}}=\mathrm{1}\:{cm}/{s}\:\:,\:\:\frac{{dr}_{\mathrm{1}} }{{dt}}=\mathrm{2}\:{cm}/{s} \\ $$$${A}_{{shaded}} =\pi{r}_{\mathrm{2}} ^{\mathrm{2}} −\pi{r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow{A}_{{shaded}} =\pi\left({r}_{\mathrm{2}} ^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=\mathrm{2}\pi\left({r}_{\mathrm{2}} ×\frac{{dr}_{\mathrm{1}} }{{dt}}−{r}_{\mathrm{1}} ×\frac{{dr}_{\mathrm{2}} }{{dt}}\right) \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=\mathrm{2}\pi\left({r}_{\mathrm{2}} \left(\mathrm{1}\right)−{r}_{\mathrm{1}} \left(\mathrm{2}\right)\right) \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=\mathrm{2}\pi\left({r}_{\mathrm{2}} −\mathrm{2}{r}_{\mathrm{1}} \right) \\ $$$${when}\:{r}_{\mathrm{1}} =\mathrm{8}\:{cm},\:{r}_{\mathrm{2}} =\mathrm{12}\:{cm} \\ $$$$\frac{{dA}}{{dt}}=\mathrm{2}\pi\left(\mathrm{12}−\mathrm{16}\right) \\ $$$$\frac{{dA}}{{dt}}=−\mathrm{8}\pi\:{cm}/{s} \\ $$
Answered by Kunal12588 last updated on 03/Mar/20
Commented by Kunal12588 last updated on 03/Mar/20
(r/h)=((12)/(18))  ⇒r=((2h)/3)  V=(1/3)πr^2 h  ⇒V=(1/3)π×(4/9)h^3   ⇒V=(4/(27))πh^3   ⇒(dV/dh)=(4/9)πh^2 ×(dh/dt)  ⇒(dV/dh)=(4/9)π×36×(dh/dt)  ⇒2=16π(dh/dt)  ⇒(dh/dt)=(1/(8π))cm/s
$$\frac{{r}}{{h}}=\frac{\mathrm{12}}{\mathrm{18}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{h}}{\mathrm{3}} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{3}}\pi{r}^{\mathrm{2}} {h} \\ $$$$\Rightarrow{V}=\frac{\mathrm{1}}{\mathrm{3}}\pi×\frac{\mathrm{4}}{\mathrm{9}}{h}^{\mathrm{3}} \\ $$$$\Rightarrow{V}=\frac{\mathrm{4}}{\mathrm{27}}\pi{h}^{\mathrm{3}} \\ $$$$\Rightarrow\frac{{dV}}{{dh}}=\frac{\mathrm{4}}{\mathrm{9}}\pi{h}^{\mathrm{2}} ×\frac{{dh}}{{dt}} \\ $$$$\Rightarrow\frac{{dV}}{{dh}}=\frac{\mathrm{4}}{\mathrm{9}}\pi×\mathrm{36}×\frac{{dh}}{{dt}} \\ $$$$\Rightarrow\mathrm{2}=\mathrm{16}\pi\frac{{dh}}{{dt}} \\ $$$$\Rightarrow\frac{{dh}}{{dt}}=\frac{\mathrm{1}}{\mathrm{8}\pi}{cm}/{s} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *