Menu Close

Question-84288




Question Number 84288 by jagoll last updated on 11/Mar/20
Commented by jagoll last updated on 11/Mar/20
dear Mr W. please help me
$$\mathrm{dear}\:\mathrm{Mr}\:\mathrm{W}.\:\mathrm{please}\:\mathrm{help}\:\mathrm{me} \\ $$
Commented by jagoll last updated on 11/Mar/20
yes sir. the question not complet
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{the}\:\mathrm{question}\:\mathrm{not}\:\mathrm{complet} \\ $$
Commented by mr W last updated on 11/Mar/20
too less information!  the shaded area depents on the radius  of circle P_1 .
$${too}\:{less}\:{information}! \\ $$$${the}\:{shaded}\:{area}\:{depents}\:{on}\:{the}\:{radius} \\ $$$${of}\:{circle}\:{P}_{\mathrm{1}} .\: \\ $$
Commented by jagoll last updated on 11/Mar/20
the radius of circle P_2  is the same as  diameter of circle P_3  sir
$$\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{P}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as} \\ $$$$\mathrm{diameter}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{P}_{\mathrm{3}} \:\mathrm{sir} \\ $$
Commented by mr W last updated on 11/Mar/20
but i asked for radius of circle P_1 .
$${but}\:{i}\:{asked}\:{for}\:{radius}\:{of}\:{circle}\:{P}_{\mathrm{1}} . \\ $$
Commented by jagoll last updated on 11/Mar/20
the original question circle P_1  becomes  P_2 . i mispresent
$$\mathrm{the}\:\mathrm{original}\:\mathrm{question}\:\mathrm{circle}\:\mathrm{P}_{\mathrm{1}} \:\mathrm{becomes} \\ $$$$\mathrm{P}_{\mathrm{2}} .\:\mathrm{i}\:\mathrm{mispresent} \\ $$$$ \\ $$
Commented by mr W last updated on 11/Mar/20
we must know the radius both from  P_1  and from P_2 .
$${we}\:{must}\:{know}\:{the}\:{radius}\:{both}\:{from} \\ $$$${P}_{\mathrm{1}} \:{and}\:{from}\:{P}_{\mathrm{2}} . \\ $$
Commented by jagoll last updated on 11/Mar/20
sir w. let radius circle P_1  is (√5)  what the shaded area sir?
$$\mathrm{sir}\:\mathrm{w}.\:\mathrm{let}\:\mathrm{radius}\:\mathrm{circle}\:\mathrm{P}_{\mathrm{1}} \:\mathrm{is}\:\sqrt{\mathrm{5}} \\ $$$$\mathrm{what}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{area}\:\mathrm{sir}? \\ $$
Answered by mr W last updated on 11/Mar/20
Commented by mr W last updated on 11/Mar/20
BC=2  AB=AC=(√5)  cos β=(1/( (√5)))  ⇒sin 2β=2×(1/( (√5)))×(2/( (√5)))=(4/5)  α=π−2β  sin 2α=−sin 4β=2×(4/5)×(3/5)=((24)/(25))  A_(shade) =(2^2 /2)(2 cos^(−1) (1/( (√5)))−(4/5))+((((√5))^2 )/2)(2π−4 cos^(−1) (1/( (√5)))−((24)/(25)))−π×1^2   =4π−4−6 cos^(−1) (1/( (√5)))  =1.923
$${BC}=\mathrm{2} \\ $$$${AB}={AC}=\sqrt{\mathrm{5}} \\ $$$$\mathrm{cos}\:\beta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{2}\beta=\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\alpha=\pi−\mathrm{2}\beta \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha=−\mathrm{sin}\:\mathrm{4}\beta=\mathrm{2}×\frac{\mathrm{4}}{\mathrm{5}}×\frac{\mathrm{3}}{\mathrm{5}}=\frac{\mathrm{24}}{\mathrm{25}} \\ $$$${A}_{{shade}} =\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}−\frac{\mathrm{4}}{\mathrm{5}}\right)+\frac{\left(\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\pi−\mathrm{4}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}−\frac{\mathrm{24}}{\mathrm{25}}\right)−\pi×\mathrm{1}^{\mathrm{2}} \\ $$$$=\mathrm{4}\pi−\mathrm{4}−\mathrm{6}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$=\mathrm{1}.\mathrm{923} \\ $$
Commented by jagoll last updated on 11/Mar/20
cos β = ((5+4−5)/(2.(√5).2)) = (1/( (√5))) sir   by cosine of law ?
$$\mathrm{cos}\:\beta\:=\:\frac{\mathrm{5}+\mathrm{4}−\mathrm{5}}{\mathrm{2}.\sqrt{\mathrm{5}}.\mathrm{2}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\mathrm{sir}\: \\ $$$$\mathrm{by}\:\mathrm{cosine}\:\mathrm{of}\:\mathrm{law}\:? \\ $$
Commented by john santu last updated on 12/Mar/20
yes
$$\mathrm{yes} \\ $$
Commented by mr W last updated on 12/Mar/20
AB=AC  ⇒∠B=∠C=β  cos β=(((BC)/2)/(AB))=((2/2)/( (√5)))=(1/( (√5)))   (=sin (α/2))
$${AB}={AC} \\ $$$$\Rightarrow\angle{B}=\angle{C}=\beta \\ $$$$\mathrm{cos}\:\beta=\frac{\frac{{BC}}{\mathrm{2}}}{{AB}}=\frac{\frac{\mathrm{2}}{\mathrm{2}}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\:\:\left(=\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *