Menu Close

Question-84335




Question Number 84335 by ajfour last updated on 11/Mar/20
Commented by ajfour last updated on 11/Mar/20
min(p+q+r)=f(a,b,c) . Find f.
$${min}\left({p}+{q}+{r}\right)={f}\left({a},{b},{c}\right)\:.\:{Find}\:{f}. \\ $$
Commented by mr W last updated on 12/Mar/20
Δ=area of ABC=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  min(p+q+r)=3R=((3abc)/(4Δ))  =((3abc)/( (√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))))
$$\Delta={area}\:{of}\:{ABC}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$${min}\left({p}+{q}+{r}\right)=\mathrm{3}{R}=\frac{\mathrm{3}{abc}}{\mathrm{4}\Delta} \\ $$$$=\frac{\mathrm{3}{abc}}{\:\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}} \\ $$
Commented by ajfour last updated on 12/Mar/20
does that mean,   p+q+r is minimum when  p=q=r=R , Sir ?
$${does}\:{that}\:{mean},\: \\ $$$${p}+{q}+{r}\:{is}\:{minimum}\:{when} \\ $$$${p}={q}={r}={R}\:,\:{Sir}\:? \\ $$
Commented by mr W last updated on 12/Mar/20
yes. due to symmetry.
$${yes}.\:{due}\:{to}\:{symmetry}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *