Menu Close

Question-84641




Question Number 84641 by M±th+et£s last updated on 14/Mar/20
Commented by M±th+et£s last updated on 14/Mar/20
a square, a circle and tow semicircles  the are of the square is 4.what is the  length of the blue lenght
$${a}\:{square},\:{a}\:{circle}\:{and}\:{tow}\:{semicircles} \\ $$$${the}\:{are}\:{of}\:{the}\:{square}\:{is}\:\mathrm{4}.{what}\:{is}\:{the} \\ $$$${length}\:{of}\:{the}\:{blue}\:{lenght} \\ $$
Answered by MJS last updated on 15/Mar/20
area of square = 4 ⇒ side length =2 ⇒  radius of incircle =1 ⇒  radii of blue semicircles r+R=1 ⇒ R=1−r  length of blue line = (r+R)π=π
$$\mathrm{area}\:\mathrm{of}\:\mathrm{square}\:=\:\mathrm{4}\:\Rightarrow\:\mathrm{side}\:\mathrm{length}\:=\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{incircle}\:=\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{radii}\:\mathrm{of}\:\mathrm{blue}\:\mathrm{semicircles}\:{r}+{R}=\mathrm{1}\:\Rightarrow\:{R}=\mathrm{1}−{r} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{blue}\:\mathrm{line}\:=\:\left({r}+{R}\right)\pi=\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *