Menu Close

Question-84693




Question Number 84693 by Power last updated on 15/Mar/20
Commented by abdomathmax last updated on 15/Mar/20
let ϕ(t)=∫_0 ^∞  ((sin(tx))/(x(x^2  +1)))dx  we have  ϕ^′ (t)=∫_0 ^∞  ((cos(tx))/(x^2 +1))dx ⇒2ϕ^′ (t)=∫_(−∞) ^(+∞)  ((cos(tx))/(x^2  +1))dx  =Re(∫_(−∞) ^(+∞)  (e^(itx) /(x^2  +1))dx)  residus theorem give  ∫_(−∞) ^(+∞)  (e^(itx) /(x^2  +1))dx =2iπ Res(f,i) =2iπ×(e^(−t) /(2i))  =πe^(−t)  ⇒2ϕ^′ (t)=πe^(−t)  ⇒ϕ^′ (t)=(π/2)e^(−t)  ⇒  ϕ(t)=k−(π/2)e^(−t)   ϕ(0)=0=k−(π/2) ⇒k=(π/2) ⇒ϕ(t)=(π/2)−(π/2)e^(−t)   I =∫_0 ^∞   ((sinx)/(x(1+x^2 )))dx =ϕ(1)=(π/2)−(π/(2e))
$${let}\:\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({tx}\right)}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}{dx}\:\:{we}\:{have} \\ $$$$\varphi^{'} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({tx}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:\Rightarrow\mathrm{2}\varphi^{'} \left({t}\right)=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({tx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$$$={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{itx}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\right)\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{e}^{{itx}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:=\mathrm{2}{i}\pi\:{Res}\left({f},{i}\right)\:=\mathrm{2}{i}\pi×\frac{{e}^{−{t}} }{\mathrm{2}{i}} \\ $$$$=\pi{e}^{−{t}} \:\Rightarrow\mathrm{2}\varphi^{'} \left({t}\right)=\pi{e}^{−{t}} \:\Rightarrow\varphi^{'} \left({t}\right)=\frac{\pi}{\mathrm{2}}{e}^{−{t}} \:\Rightarrow \\ $$$$\varphi\left({t}\right)={k}−\frac{\pi}{\mathrm{2}}{e}^{−{t}} \\ $$$$\varphi\left(\mathrm{0}\right)=\mathrm{0}={k}−\frac{\pi}{\mathrm{2}}\:\Rightarrow{k}=\frac{\pi}{\mathrm{2}}\:\Rightarrow\varphi\left({t}\right)=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}{e}^{−{t}} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:=\varphi\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{2}{e}} \\ $$
Answered by Joel578 last updated on 15/Mar/20
I(t) = ∫_0 ^∞  ((sin (tx))/(x(1 + x^2 ))) dx  ⇒ I ′(t) = ∫_0 ^∞  ((cos (tx))/(1 + x^2 )) dx  ⇒ I ′′(t) = −∫_0 ^∞  ((x sin (tx))/(1 + x^2 )) dx =  −∫_0 ^∞  (((x^2  + 1 − 1)sin (tx))/(x(1 + x^2 ))) dx                = −∫_0 ^∞  ((sin (tx))/x) dx + ∫_0 ^∞  ((sin (tx))/(x(1 + x^2 ))) dx  ⇒ I ′′(t) = −(π/2) + I(t)  ⇒ I ′′ − I = −(π/2)  Solving non−homogeneous ODE gives  ⇒ I(t) = C_1 e^t  + C_2 e^(−t)  + (π/2)  ⇒ I ′(t) = C_1 e^t  − C_2 e^(−t)   Note that I(0) = ∫_0 ^∞ 0 dx = C_1  + C_2  + (π/2) = 0   and I ′(0) = ∫_0 ^∞ (1/(1 + x^2 )) dx = C_1  − C_2  = (π/2)  ⇒ C_1  = 0, C_2  = −(π/2)  ⇒ I(t) = ∫_0 ^∞ ((sin (tx))/(x(1 + x^2 ))) dx = −(π/2)e^(−t)  + (π/2)  ⇒ I(1) = ∫_0 ^∞  ((sin (x))/(x(1 + x^2 ))) dx = −(π/(2e)) + (π/2)
$${I}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\:\left({tx}\right)}{{x}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\Rightarrow\:{I}\:'\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\:\left({tx}\right)}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx} \\ $$$$\Rightarrow\:{I}\:''\left({t}\right)\:=\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{x}\:\mathrm{sin}\:\left({tx}\right)}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx}\:=\:\:−\int_{\mathrm{0}} ^{\infty} \:\frac{\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\:−\:\mathrm{1}\right)\mathrm{sin}\:\left({tx}\right)}{{x}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\:\left({tx}\right)}{{x}}\:{dx}\:+\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\:\left({tx}\right)}{{x}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\Rightarrow\:{I}\:''\left({t}\right)\:=\:−\frac{\pi}{\mathrm{2}}\:+\:{I}\left({t}\right) \\ $$$$\Rightarrow\:{I}\:''\:−\:{I}\:=\:−\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{Solving}\:\mathrm{non}−\mathrm{homogeneous}\:\mathrm{ODE}\:\mathrm{gives} \\ $$$$\Rightarrow\:{I}\left({t}\right)\:=\:{C}_{\mathrm{1}} {e}^{{t}} \:+\:{C}_{\mathrm{2}} {e}^{−{t}} \:+\:\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:{I}\:'\left({t}\right)\:=\:{C}_{\mathrm{1}} {e}^{{t}} \:−\:{C}_{\mathrm{2}} {e}^{−{t}} \\ $$$$\mathrm{Note}\:\mathrm{that}\:{I}\left(\mathrm{0}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \mathrm{0}\:{dx}\:=\:{C}_{\mathrm{1}} \:+\:{C}_{\mathrm{2}} \:+\:\frac{\pi}{\mathrm{2}}\:=\:\mathrm{0}\: \\ $$$$\mathrm{and}\:{I}\:'\left(\mathrm{0}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx}\:=\:{C}_{\mathrm{1}} \:−\:{C}_{\mathrm{2}} \:=\:\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:{C}_{\mathrm{1}} \:=\:\mathrm{0},\:{C}_{\mathrm{2}} \:=\:−\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:{I}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:\left({tx}\right)}{{x}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}\:{dx}\:=\:−\frac{\pi}{\mathrm{2}}{e}^{−{t}} \:+\:\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:{I}\left(\mathrm{1}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\:\left({x}\right)}{{x}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}\:{dx}\:=\:−\frac{\pi}{\mathrm{2}{e}}\:+\:\frac{\pi}{\mathrm{2}} \\ $$
Commented by Power last updated on 15/Mar/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *