Menu Close

Question-84718




Question Number 84718 by Power last updated on 15/Mar/20
Answered by mr W last updated on 15/Mar/20
AC^2 =PA^2 +PC^2 −2×PA×PC cos 120°  ⇒AC^2 =PA^2 +PC^2 +PA×PC  ((PA^2 +PB^2 −AB^2 )/(2×PA×PB))=((PC^2 +PB^2 −BC^2 )/(2×PC×PB))  ((PA^2 +PB^2 −PA^2 −PC^2 −PA×PC)/(PA))=((PC^2 +PB^2 −PA^2 −PC^2 −PA×PC)/(PC))  ((PB^2 −PC^2 −PA×PC)/(PA))=((PB^2 −PA^2 −PA×PC)/(PC))  PB^2 ×PC−PC^3 −PA×PC^2 =PB^2 ×PA−PA^3 −PA^2 ×PC  PB^2 ×(PC−PA)=PC^3 −PA^3 +PA×PC(PC−PA)  PB^2 =PC^2 +PA×PC+PA^2 +PA×PC  PB^2 =(PA+PC)^2   ⇒PB=PA+PC
AC2=PA2+PC22×PA×PCcos120°AC2=PA2+PC2+PA×PCPA2+PB2AB22×PA×PB=PC2+PB2BC22×PC×PBPA2+PB2PA2PC2PA×PCPA=PC2+PB2PA2PC2PA×PCPCPB2PC2PA×PCPA=PB2PA2PA×PCPCPB2×PCPC3PA×PC2=PB2×PAPA3PA2×PCPB2×(PCPA)=PC3PA3+PA×PC(PCPA)PB2=PC2+PA×PC+PA2+PA×PCPB2=(PA+PC)2PB=PA+PC
Commented by Power last updated on 15/Mar/20
thanks
thanks
Answered by behi83417@gmail.com last updated on 15/Mar/20
PA.BC+PC.AB=PB.AC⇒^(BA=BC=AC)   (PA+PC).BC=PB.AC  PA+PC=PB  (by using petolemy′s teorem)
PA.BC+PC.AB=PB.ACBA=BC=AC(PA+PC).BC=PB.ACPA+PC=PB(byusingpetolemysteorem)
Commented by mr W last updated on 15/Mar/20
nice way sir!
nicewaysir!

Leave a Reply

Your email address will not be published. Required fields are marked *