Question Number 84941 by Power last updated on 17/Mar/20
Commented by mr W last updated on 17/Mar/20
$${use}\:{method}\:{in}\:{Q}\mathrm{84782}\:{to}\:{find}\:{the} \\ $$$${last}\:{two}\:{digits} \\ $$
Answered by mr W last updated on 17/Mar/20
$$\mathrm{348}^{\mathrm{67}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}^{\mathrm{67}} =\mathrm{48}×\left(\mathrm{48}^{\mathrm{2}} \right)^{\mathrm{33}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}×\mathrm{4}^{\mathrm{33}} =\mathrm{48}×\mathrm{4}×\left(\mathrm{4}^{\mathrm{4}} \right)^{\mathrm{8}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}×\mathrm{4}×\mathrm{56}^{\mathrm{8}} =\mathrm{48}×\mathrm{4}×\left(\mathrm{56}^{\mathrm{2}} \right)^{\mathrm{4}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}×\mathrm{4}×\mathrm{36}^{\mathrm{4}} =\mathrm{48}×\mathrm{4}×\left(\mathrm{36}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}×\mathrm{4}×\mathrm{96}^{\mathrm{2}} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{48}×\mathrm{4}×\mathrm{16}=\mathrm{48}×\mathrm{64} \\ $$$$\overset{\mathrm{2}} {=}\mathrm{72} \\ $$$$\Rightarrow{the}\:{last}\:{two}\:{digits}\:{of}\:\mathrm{348}^{\mathrm{67}} \:{are}\:\mathrm{72} \\ $$$$\Rightarrow\mathrm{348}^{\mathrm{67}} \equiv\mathrm{72}\:{mod}\:\left(\mathrm{100}\right) \\ $$
Answered by mr W last updated on 18/Mar/20
$${what}\:{if}\:{the}\:{question}\:{is} \\ $$$$\mathrm{348}^{\mathrm{67}} \equiv{x}\:{mod}\:\mathrm{89} \\ $$$$ \\ $$$$\mathrm{348}^{\mathrm{67}} =\left(\mathrm{3}×\mathrm{89}+\mathrm{81}\right)^{\mathrm{67}} \\ $$$$\equiv\mathrm{81}^{\mathrm{67}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\left(\mathrm{73}×\mathrm{89}+\mathrm{64}\right)^{\mathrm{33}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}^{\mathrm{33}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\left(\mathrm{46}×\mathrm{89}+\mathrm{2}\right)^{\mathrm{16}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\mathrm{2}^{\mathrm{16}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\left(\mathrm{2}×\mathrm{89}+\mathrm{78}\right)^{\mathrm{2}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\mathrm{78}^{\mathrm{2}} \:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\left(\mathrm{68}×\mathrm{89}+\mathrm{32}\right)\:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}×\mathrm{64}×\mathrm{32}\:{mod}\:\mathrm{89} \\ $$$$\equiv\left(\mathrm{58}×\mathrm{89}+\mathrm{22}\right)×\mathrm{32}\:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{22}×\mathrm{32}\:{mod}\:\mathrm{89} \\ $$$$\equiv\left(\mathrm{7}×\mathrm{89}+\mathrm{81}\right)\:{mod}\:\mathrm{89} \\ $$$$\equiv\mathrm{81}\:{mod}\:\mathrm{89} \\ $$