Question Number 85365 by Power last updated on 21/Mar/20
Answered by jagoll last updated on 21/Mar/20
$$\mathrm{C}\:=\:\mathrm{S}_{\mathrm{112}} \:=\:\frac{\mathrm{112}}{\mathrm{2}}\left(−\mathrm{4}+\left(\mathrm{111}×\left(−\mathrm{8}\right)\right)\right. \\ $$$$=\:\mathrm{56}\:×\left(−\mathrm{892}\right) \\ $$$$=\:−\mathrm{49952} \\ $$
Commented by Power last updated on 21/Mar/20
$$? \\ $$
Commented by john santu last updated on 21/Mar/20
$${consider}\:\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\:=\: \\ $$$$\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}+{x}\right)\:=\:\mathrm{1}−{x}^{\mathrm{2}} +\left(\mathrm{1}−{x}\right){x} \\ $$$$=\:\mathrm{1}−{x}^{\mathrm{2}} +{x}−{x}^{\mathrm{2}} =\mathrm{1}+{x}−\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{4}{x}\right)\:=\:\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{3}{x}+{x}\right) \\ $$$$=\:\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} +{x}\left(\mathrm{1}−\mathrm{3}{x}\right) \\ $$$$=\:\mathrm{1}+{x}−\mathrm{12}{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\mathrm{5}{x}\right)\left(\mathrm{1}+\mathrm{6}{x}\right)=\left(\mathrm{1}−\mathrm{5}{x}\right)\left(\mathrm{1}+\mathrm{5}{x}+{x}\right) \\ $$$$=\:\mathrm{1}−\mathrm{25}{x}^{\mathrm{2}} +{x}\left(\mathrm{1}−\mathrm{5}{x}\right) \\ $$$$=\:\mathrm{1}+{x}−\mathrm{30}{x}^{\mathrm{2}} \\ $$$${now}\::\:\left(\mathrm{1}+{x}−\mathrm{2}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}−\mathrm{12}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}−\mathrm{30}{x}^{\mathrm{2}} \right)×… \\ $$$$×\left(\mathrm{1}+{x}−\mathrm{892}{x}^{\mathrm{2}} \right) \\ $$$$ \\ $$
Commented by Power last updated on 21/Mar/20
$$\mathrm{i}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand} \\ $$
Commented by john santu last updated on 21/Mar/20
$${ouwh} \\ $$
Answered by mr W last updated on 21/Mar/20
$$\left(\mathrm{1}−\left(\mathrm{2}{n}−\mathrm{1}\right){x}\right)\left(\mathrm{1}+\mathrm{2}{nx}\right)=\mathrm{1}+{x}−\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right){x}^{\mathrm{2}} \\ $$$$ \\ $$$$\left\{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{4}{x}\right)…\left(\mathrm{1}−\mathrm{221}{x}\right)\left(\mathrm{1}+\mathrm{222}{x}\right)\right\}\left(\mathrm{1}−\mathrm{223}{x}\right) \\ $$$$=\left\{\underset{{n}=\mathrm{1}} {\overset{\mathrm{111}} {\prod}}\left[\mathrm{1}−\left(\mathrm{2}{n}−\mathrm{1}\right){x}\right]\left(\mathrm{1}+\mathrm{2}{nx}\right)\right\}\left(\mathrm{1}−\mathrm{223}{x}\right) \\ $$$$=\left\{\underset{{n}=\mathrm{1}} {\overset{\mathrm{111}} {\prod}}\left[\mathrm{1}+{x}−\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right){x}^{\mathrm{2}} \right]\right\}\left(\mathrm{1}−\mathrm{223}{x}\right) \\ $$$${coef}.\:{of}\:{x}^{\mathrm{2}} : \\ $$$$−\underset{{n}=\mathrm{1}} {\overset{\mathrm{111}} {\sum}}\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)+\frac{\mathrm{111}×\mathrm{110}}{\mathrm{2}}−\mathrm{223}×\mathrm{111} \\ $$$$=−\underset{{n}=\mathrm{1}} {\overset{\mathrm{111}} {\sum}}\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{2}{n}\right)+\frac{\mathrm{111}×\mathrm{110}}{\mathrm{2}}−\mathrm{223}×\mathrm{111} \\ $$$$=−\left(\mathrm{4}×\frac{\mathrm{111}×\mathrm{112}×\mathrm{223}}{\mathrm{6}}−\mathrm{2}×\frac{\mathrm{111}×\mathrm{112}}{\mathrm{2}}\right)+\frac{\mathrm{111}×\mathrm{110}}{\mathrm{2}}−\mathrm{223}×\mathrm{111} \\ $$$$=−\mathrm{4}×\frac{\mathrm{111}×\mathrm{112}×\mathrm{223}}{\mathrm{6}}−\mathrm{56}×\mathrm{111} \\ $$$$=−\mathrm{1}\:\mathrm{854}\:\mathrm{440}\:\Rightarrow\:{answer} \\ $$
Commented by Power last updated on 21/Mar/20
$$\mathrm{thanks} \\ $$
Answered by mr W last updated on 21/Mar/20
$${an}\:{other}\:{way} \\ $$$$\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{4}{x}\right)…\left(\mathrm{1}−\mathrm{223}{x}\right) \\ $$$$=\left(\mathrm{1}+{a}_{\mathrm{2}} {x}\right)\left(\mathrm{1}+{a}_{\mathrm{2}} {x}\right)\left(\mathrm{1}+{a}_{\mathrm{3}} {x}\right)…\left(\mathrm{1}+{a}_{\mathrm{223}} {x}\right) \\ $$$${with}\:{a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} {n} \\ $$$$ \\ $$$${coef}.\:{of}\:{x}^{\mathrm{2}} : \\ $$$${C}_{\mathrm{2}} =\underset{\underset{{j}>{i}} {{i},{j}=\mathrm{1},\mathrm{2},…,\mathrm{223}}} {\sum}{a}_{{i}} {a}_{{j}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\underset{{i}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{i}} \left(\underset{{j}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{j}} −{a}_{{i}} \right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\underset{{i}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{i}} \right)^{\mathrm{2}} −\underset{{i}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{i}} ^{\mathrm{2}} \right\} \\ $$$$ \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{i}} =\left(−\mathrm{1}+\mathrm{2}\right)+\left(−\mathrm{3}+\mathrm{4}\right)−…+\left(−\mathrm{221}+\mathrm{222}\right)−\mathrm{223} \\ $$$$=\mathrm{1}×\mathrm{111}−\mathrm{223} \\ $$$$=\mathrm{112} \\ $$$$ \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{223}} {\sum}}{a}_{{i}} ^{\mathrm{2}} =\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\left(−\mathrm{3}\right)^{\mathrm{2}} +…+\left(−\mathrm{223}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{223}×\mathrm{224}×\left(\mathrm{2}×\mathrm{223}+\mathrm{1}\right)}{\mathrm{6}}=\mathrm{3}\:\mathrm{721}\:\mathrm{424} \\ $$$$ \\ $$$$\Rightarrow{C}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{112}^{\mathrm{2}} −\mathrm{3}\:\mathrm{721}\:\mathrm{424}\right)=−\mathrm{1}\:\mathrm{854}\:\mathrm{440} \\ $$