Menu Close

Question-85395




Question Number 85395 by Power last updated on 21/Mar/20
Commented by MJS last updated on 21/Mar/20
let t=(√(ctg x)) → dx=−2sin^2  x (√(ctg x))  ⇒ ∫(√(ctg x))dx=−2∫(t^2 /(t^4 +1))dt  and this should be easy
$$\mathrm{let}\:{t}=\sqrt{\mathrm{ctg}\:{x}}\:\rightarrow\:{dx}=−\mathrm{2sin}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{ctg}\:{x}} \\ $$$$\Rightarrow\:\int\sqrt{\mathrm{ctg}\:{x}}{dx}=−\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} +\mathrm{1}}{dt} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{should}\:\mathrm{be}\:\mathrm{easy} \\ $$
Answered by sakeefhasan05@gmail.com last updated on 21/Mar/20
=(√(ctg )) ∫x^(1/2) dx  =(√(ctg))  2 (x^(3/2) /3) +C  if  c,t,g  are constants
$$=\sqrt{\mathrm{ctg}\:}\:\int\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dx} \\ $$$$=\sqrt{\mathrm{ctg}}\:\:\mathrm{2}\:\frac{\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\:+\mathrm{C} \\ $$$$\mathrm{if}\:\:\mathrm{c},\mathrm{t},\mathrm{g}\:\:\mathrm{are}\:\mathrm{constants} \\ $$
Commented by Power last updated on 21/Mar/20
∫(√(cotx)) dx
$$\int\sqrt{\mathrm{cotx}}\:\mathrm{dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *