Menu Close

Question-85871




Question Number 85871 by M±th+et£s last updated on 25/Mar/20
Commented by Rio Michael last updated on 25/Mar/20
all integers
allintegers
Commented by mr W last updated on 25/Mar/20
all integers except 1.  x=1+δ  f(x)=[1+d]^2 −[(1+d)^2 ]  lim_(x→1^+ ) f(x)=lim_(δ→0) {[1+d]^2 −[(1+d)^2 ]}=1−1=0  x=1−δ  f(x)=[1−d]^2 −[(1−d)^2 ]  lim_(x→1^− ) f(x)=lim_(δ→0) {[1−d]^2 −[(1−d)^2 ]}=0−0=0  f(1)=1−1=0    lim_(x→1^− ) f(x)=lim_(x→1^+ ) f(x)=f(1)  ⇒continuous at x=1
allintegersexcept1.x=1+δf(x)=[1+d]2[(1+d)2]limx1+f(x)=limδ0{[1+d]2[(1+d)2]}=11=0x=1δf(x)=[1d]2[(1d)2]limx1f(x)=limδ0{[1d]2[(1d)2]}=00=0f(1)=11=0limx1f(x)=limx1+f(x)=f(1)continuousatx=1
Commented by M±th+et£s last updated on 25/Mar/20
thank you so much sir
thankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *