Menu Close

Question-85896




Question Number 85896 by ar247 last updated on 25/Mar/20
Commented by abdomathmax last updated on 25/Mar/20
I=∫  ((5x−5)/(3x^2 −8x−3))dx  3x^2 −8x−3=0 →Δ^′ =4^2 −(3)(−3) =16+9=25  x_1 =((4+5)/3) =3 and x_2 =((4−5)/3)=−(1/3) ⇒  I =∫   ((5x−5)/(3(x−3)(x+(1/3))))dx let decompose  F(x)=((5x−5)/((x−3)(3x+1)))  F(x)=(a/(x−3)) +(b/(3x+1))  a=(x−3)F(x)∣_(x=3)    =((10)/(10))=1  b=(3x+1)F(x)∣_(x=−(1/3))    = ((−(5/3)−5)/(−(1/3)−3)) =((20)/(10))=2 ⇒  F(x)=(1/(x−3))+(2/(3x+1)) ⇒ I =∫(dx/(x−3)) +2∫  (dx/(3x+1))  =ln∣x−3∣+(2/3)ln∣3x+1∣ +c
I=5x53x28x3dx3x28x3=0Δ=42(3)(3)=16+9=25x1=4+53=3andx2=453=13I=5x53(x3)(x+13)dxletdecomposeF(x)=5x5(x3)(3x+1)F(x)=ax3+b3x+1a=(x3)F(x)x=3=1010=1b=(3x+1)F(x)x=13=535133=2010=2F(x)=1x3+23x+1I=dxx3+2dx3x+1=lnx3+23ln3x+1+c
Commented by abdomathmax last updated on 25/Mar/20
2) A =∫  ((2x^5 −x^3 −1)/(x^3 −4x))dx  ⇒  A =∫  ((2(x^3 −4x)x^2 +8x^3 −x^3 −1)/(x^3 −4x))dx  =2x  +∫   ((7x^3 −1)/(x^3 −4x))dx  =2x +∫  ((7(x^3 −4x)+28x−1)/(x^3 −4x))dx  =2x +7 +∫   ((28x−1)/(x^3 −4x))dx let decompose  F(x)=((28x−1)/(x^3 −4x)) =((28x−1)/(x(x−2)(x+2)))  F(x)=(a/x) +(b/(x−2)) +(c/(x+2))  a =((−1)/((−2)(2))) =(1/4)  b=((56−1)/(2.4)) =((55)/8)  c=((−56−1)/((−2)(−4))) =((57)/8) ⇒F(x)=(1/(4x))+((55)/(8(x−2)))+((57)/(8(x+2)))  A =2x+7 +(1/4)ln∣x∣ +((55)/8)ln∣x−2∣ +((57)/8)ln∣x+2∣ +C
2)A=2x5x31x34xdxA=2(x34x)x2+8x3x31x34xdx=2x+7x31x34xdx=2x+7(x34x)+28x1x34xdx=2x+7+28x1x34xdxletdecomposeF(x)=28x1x34x=28x1x(x2)(x+2)F(x)=ax+bx2+cx+2a=1(2)(2)=14b=5612.4=558c=561(2)(4)=578F(x)=14x+558(x2)+578(x+2)A=2x+7+14lnx+558lnx2+578lnx+2+C
Commented by abdomathmax last updated on 25/Mar/20
4) I = ∫ ((√(x^2 −25))/x)dx  we do the chsngement  x=5 ch(t) ⇒ I =∫ ((5 sh(t))/(5ch(t))) ×5sh(t)dt  =5 ∫  ((sh^2 t)/(cht)) dt =(5/2)∫  ((ch(2t)−1)/(ch(t)))dt  =(5/2)∫  ((((e^(2t)  +e^(−2t) )/2)−1)/((e^t  +e^(−t) )/2))dt =(5/2)∫  ((e^(2t) +e^(−2t) −2)/(e^t  +e^(−t) ))dt  =_(e^t  =u)     (5/2)∫  ((u^2  +u^(−2) −2)/(u+u^(−1) ))(du/u)  =(5/2)∫  ((u^2 +u^(−2) −2)/(u^2  +1))du  =(5/2)∫  ((u^4  +1−2u^2 )/(u^2 (u^2  +1)))du  decomposition  ((u^4 −2u^2  +1)/(u^4  +u^2 )) =((u^4 +u^2 −3u^2 +1)/(u^4  +u^2 ))  =1 +((−3u^2  +1)/(u^4  +u^2 ))  F(u) =((−3u^2  +1)/(u^4  +u^2 )) =((−3u^2 +1)/(u^2 (u^2  +1)))  =(a/u) +(b/u^2 ) +((cu +d)/(u^2  +1))  F(−u)=F(u) ⇒((−a)/u) +(b/u^2 ) +((−cu +d)/(u^2  +1))=(a/u) +(b/u^2 )+((cu+d)/(u^2  +1))  ⇒a=0  and c=0 ⇒F(u)=(b/u^2 ) +(d/(u^2 +1))  b=1 ⇒F(u)=(1/u^2 ) +(d/(u^2  +1))  F(1)=−1 =1 +(d/2) ⇒−2 =(d/2) ⇒d=−4 ⇒  F(u)=(1/u^2 )−(4/(u^2  +1)) ⇒  I =(5/2){u +∫ F(u)du}  =(5/2)u +(5/2)(−(1/u)−4 arctan(u)) +C  =(5/2)e^t −(5/2)e^(−t)   −10 arctan(e^t )+C  t=argch((x/5)) =ln((x/5)+(√((x^2 /(25))−1))) ⇒  I =(5/2){ (x/5)+(√((x^2 /(25))−1))−(1/((x/5)+(√((x^2 /(25))−1))))}  −10 arctan((x/5)+(√((x^2 /(25))−1))) +C
4)I=x225xdxwedothechsngementx=5ch(t)I=5sh(t)5ch(t)×5sh(t)dt=5sh2tchtdt=52ch(2t)1ch(t)dt=52e2t+e2t21et+et2dt=52e2t+e2t2et+etdt=et=u52u2+u22u+u1duu=52u2+u22u2+1du=52u4+12u2u2(u2+1)dudecompositionu42u2+1u4+u2=u4+u23u2+1u4+u2=1+3u2+1u4+u2F(u)=3u2+1u4+u2=3u2+1u2(u2+1)=au+bu2+cu+du2+1F(u)=F(u)au+bu2+cu+du2+1=au+bu2+cu+du2+1a=0andc=0F(u)=bu2+du2+1b=1F(u)=1u2+du2+1F(1)=1=1+d22=d2d=4F(u)=1u24u2+1I=52{u+F(u)du}=52u+52(1u4arctan(u))+C=52et52et10arctan(et)+Ct=argch(x5)=ln(x5+x2251)I=52{x5+x22511x5+x2251}10arctan(x5+x2251)+C
Commented by Kunal12588 last updated on 26/Mar/20
sir in (2) ∫2x^2 dx=(2/3)x^3  ?
sirin(2)2x2dx=23x3?
Answered by jagoll last updated on 26/Mar/20
(3) ∫ (dx/( (√(x^2 +4))))?  [ x = 2 tan u ]  ∫ ((2sec^2 u)/(2sec u)) du = ∫ sec u du  = ln ∣sec u + tan u ∣ + c  = ln ∣ ((x+(√(x^2 +4)))/2) ∣ + c
(3)dxx2+4?[x=2tanu]2sec2u2secudu=secudu=lnsecu+tanu+c=lnx+x2+42+c
Commented by Kunal12588 last updated on 26/Mar/20
=ln ∣x+(√(x^2 +4))∣+C
=lnx+x2+4+C
Commented by john santu last updated on 26/Mar/20
same it sir  ln ∣((x+(√(x^2 +4)))/2)∣ +c =   ln ∣x+(√(x^2 +4 )) ∣ + C
sameitsirlnx+x2+42+c=lnx+x2+4+C
Answered by Kunal12588 last updated on 26/Mar/20
(5)I=∫(dx/( (√(5−4x−2x^2 ))))  =(1/( (√2)))∫(dx/( (√(−(x^2 +2x−(5/2))))))  =(1/( (√2)))∫(dx/( (√(−[(x+1)^2 −(7/2)]))))  =(1/( (√2)))∫(dx/( (√((7/2)−(x+1)^2 ))))  =(1/( (√2)))sin^(−1) (((x+1)/((√7)/( (√2)))))+C  =(1/( (√2)))sin^(−1) ((((√2)x+(√2))/( (√7))))+C
(5)I=dx54x2x2=12dx(x2+2x52)=12dx[(x+1)272]=12dx72(x+1)2=12sin1(x+172)+C=12sin1(2x+27)+C

Leave a Reply

Your email address will not be published. Required fields are marked *