Question Number 86282 by ajfour last updated on 27/Mar/20
Commented by ajfour last updated on 27/Mar/20
$${Find}\:{s}/{r}\:.\:\:\left({s}\:{being}\:{side}\:{of}\:{square}\right). \\ $$
Commented by Prithwish Sen 1 last updated on 28/Mar/20
$$\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{get}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{6}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{8}\boldsymbol{\mathrm{x}}−\mathrm{4}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{where}}\:\boldsymbol{\mathrm{x}}\:=\:\frac{\boldsymbol{\mathrm{s}}}{\boldsymbol{\mathrm{r}}} \\ $$
Commented by ajfour last updated on 28/Mar/20
$${please}\:{explain}\:{how}\:{you}\:{reduced} \\ $$$${it}\:{to}\:{the}\:{cubic},\:{Sir}\:? \\ $$$${I}\:{get}\:{x}\approx\mathrm{4}.\mathrm{38298}\:,\:{your}\:{cubic} \\ $$$${too}\:{fetches}\:{the}\:{same},\:{but}\:{i} \\ $$$${had}\:{resorted}\:{to}\:{trigonometric} \\ $$$${way}.. \\ $$
Commented by Prithwish Sen 1 last updated on 28/Mar/20
$$\boldsymbol{\mathrm{b}}=\:\frac{\sqrt{\boldsymbol{\mathrm{s}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{sr}}}}{\mathrm{2}} \\ $$$$\therefore\:\boldsymbol{\mathrm{Diagonal}}\:\:\boldsymbol{\mathrm{AC}}\:=\:\boldsymbol{\mathrm{AE}}+\boldsymbol{\mathrm{EC}} \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{s}\sqrt{\mathrm{2}}=\:\sqrt{\mathrm{r}^{\mathrm{2}} +\left\{\sqrt{\mathrm{s}^{\mathrm{2}} −\mathrm{4sr}}+\left(\mathrm{s}−\mathrm{r}\right)^{\mathrm{2}} \right.}\:+\mathrm{r}\sqrt{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{s}}{\mathrm{r}}−\mathrm{1}\right)\sqrt{\mathrm{2}}=\:\sqrt{\mathrm{1}+\left\{\sqrt{\left(\frac{\mathrm{s}}{\mathrm{r}}\right)^{\mathrm{2}} −\mathrm{4}\left(\frac{\mathrm{s}}{\mathrm{r}}\right)}+\left(\frac{\mathrm{s}}{\mathrm{r}}+\mathrm{1}\right)\right\}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{putting}\:\frac{\mathrm{s}}{\mathrm{r}}\:=\:\mathrm{x}\:\mathrm{and}\:\mathrm{simplify} \\ $$
Commented by Prithwish Sen 1 last updated on 28/Mar/20
Commented by ajfour last updated on 28/Mar/20
$${Thanks}\:{Sir}.\:{Excellent},\:{brilliant}, \\ $$$${n}\:{magnificient}! \\ $$
Commented by Prithwish Sen 1 last updated on 28/Mar/20
$$\mathrm{welcome} \\ $$