Menu Close

Question-86586




Question Number 86586 by Power last updated on 29/Mar/20
Commented by Power last updated on 29/Mar/20
(x_1 ^5 −20)(3x_2 ^4 −2x_2 −35)=?
$$\left(\mathrm{x}_{\mathrm{1}} ^{\mathrm{5}} −\mathrm{20}\right)\left(\mathrm{3x}_{\mathrm{2}} ^{\mathrm{4}} −\mathrm{2x}_{\mathrm{2}} −\mathrm{35}\right)=? \\ $$
Commented by MJS last updated on 29/Mar/20
−1063  just solve and calculate
$$−\mathrm{1063} \\ $$$$\mathrm{just}\:\mathrm{solve}\:\mathrm{and}\:\mathrm{calculate} \\ $$
Commented by jagoll last updated on 29/Mar/20
wow...super easy
$$\mathrm{wow}…\mathrm{super}\:\mathrm{easy} \\ $$
Commented by Power last updated on 29/Mar/20
prove that sir
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{sir} \\ $$
Answered by lémùst last updated on 29/Mar/20
x^2 =x+3⇒x^4 =x^2 +6x+9  ⇒x^4 =x+3+6x+9  ⇒x^4 =7x+12  ⇒x^5 =7x^2 +12x=7(x+3)+12x=19x+21    (x_1 ^5 −20)(3x_2 ^4 −2x_2 −35)  =(19x_1 +21−20)(21x_2 +36−2x_2 −35)  =(19x_1 +1)(19x_2 +1)  =19^2 x_1 x_2 +19(x_1 +x_2 )+1  =19^2 ×(−3)+19×1+1  =−1063
$${x}^{\mathrm{2}} ={x}+\mathrm{3}\Rightarrow{x}^{\mathrm{4}} ={x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9} \\ $$$$\Rightarrow{x}^{\mathrm{4}} ={x}+\mathrm{3}+\mathrm{6}{x}+\mathrm{9} \\ $$$$\Rightarrow{x}^{\mathrm{4}} =\mathrm{7}{x}+\mathrm{12} \\ $$$$\Rightarrow{x}^{\mathrm{5}} =\mathrm{7}{x}^{\mathrm{2}} +\mathrm{12}{x}=\mathrm{7}\left({x}+\mathrm{3}\right)+\mathrm{12}{x}=\mathrm{19}{x}+\mathrm{21} \\ $$$$ \\ $$$$\left({x}_{\mathrm{1}} ^{\mathrm{5}} −\mathrm{20}\right)\left(\mathrm{3}{x}_{\mathrm{2}} ^{\mathrm{4}} −\mathrm{2}{x}_{\mathrm{2}} −\mathrm{35}\right) \\ $$$$=\left(\mathrm{19}{x}_{\mathrm{1}} +\mathrm{21}−\mathrm{20}\right)\left(\mathrm{21}{x}_{\mathrm{2}} +\mathrm{36}−\mathrm{2}{x}_{\mathrm{2}} −\mathrm{35}\right) \\ $$$$=\left(\mathrm{19}{x}_{\mathrm{1}} +\mathrm{1}\right)\left(\mathrm{19}{x}_{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\mathrm{19}^{\mathrm{2}} {x}_{\mathrm{1}} {x}_{\mathrm{2}} +\mathrm{19}\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)+\mathrm{1} \\ $$$$=\mathrm{19}^{\mathrm{2}} ×\left(−\mathrm{3}\right)+\mathrm{19}×\mathrm{1}+\mathrm{1} \\ $$$$=−\mathrm{1063} \\ $$
Commented by Power last updated on 29/Mar/20
thanks
$$\mathrm{thanks} \\ $$
Commented by lémùst last updated on 29/Mar/20
you′re welcome
$${you}'{re}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *