Question Number 86886 by Rio Michael last updated on 01/Apr/20
Commented by Rio Michael last updated on 01/Apr/20
$$\mathrm{A}\:\mathrm{smooth}\:\mathrm{sphere}\:\mathrm{S}\:\mathrm{of}\:\mathrm{mass}\:\lambda{m}\:,\:\mathrm{moving}\:\mathrm{with}\:\mathrm{speed}\:\lambda{u}\:\:\mathrm{collides}\:\mathrm{with} \\ $$$$\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{sphere}\:\mathrm{T}\:\mathrm{of}\:\:\mathrm{equal}\:\mathrm{radius}\:\mathrm{but}\:\mathrm{mass}\:{m}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{speed}\:{u}. \\ $$$$\mathrm{At}\:\mathrm{impact},\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{each}\:\mathrm{sphere}\:\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\theta \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{above}. \\ $$$$\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitutions}\:\mathrm{betweethe}\:\mathrm{spheres}\:\mathrm{is}\frac{\mathrm{1}}{\mathrm{2}}\:,\:\mathrm{and}\:\mathrm{after} \\ $$$$\mathrm{impact},\:\mathrm{the}\:\mathrm{directionof}\:\mathrm{S}\:\mathrm{cames}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{2}\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{centres},\:\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{S}\:\mathrm{along}\:\mathrm{the}\:\mathrm{along}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}}{u}\left(\mathrm{2}\lambda−\mathrm{3}\right)\mathrm{cos}\:\theta \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{3}}{\lambda} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{0}<\:\lambda<\mathrm{3} \\ $$