Menu Close

Question-86907




Question Number 86907 by TawaTawa1 last updated on 01/Apr/20
Commented by mr W last updated on 01/Apr/20
question is wrong !?  there are infinite possibilities for  PQRS.  (([PQRS])/(ΔABC))≠constant, but min.=(2/5)
$${question}\:{is}\:{wrong}\:!? \\ $$$${there}\:{are}\:{infinite}\:{possibilities}\:{for} \\ $$$${PQRS}. \\ $$$$\frac{\left[{PQRS}\right]}{\Delta{ABC}}\neq{constant},\:{but}\:{min}.=\frac{\mathrm{2}}{\mathrm{5}} \\ $$
Commented by mr W last updated on 01/Apr/20
or you didn′t show the complete question.
$${or}\:{you}\:{didn}'{t}\:{show}\:{the}\:{complete}\:{question}. \\ $$
Answered by mr W last updated on 01/Apr/20
let AB=BC=a  Δ_(ABC) =(a^2 /2)    let BQ=x, BP=y, PQ=s  s^2 =x^2 +y^2     AP=a−y  ((PS)/(sin 45°))=((AP)/(sin (45°+∠APS)))=((AP)/(sin (45°+180°−90°−∠BPQ)))  (s/(sin 45°))=((a−y)/(sin (45°+90°−∠BPQ)))  (s/(sin 45°))=((a−y)/(cos (45°−∠BPQ)))  s=((a−y)/(cos ∠BPQ+sin ∠BPQ))  ((a−y)/s)=cos ∠BPQ+sin ∠BPQ=(x/s)+(y/s)  ⇒x+2y=a  there are infinite possibilities:  (a/3)≤y≤(a/2)    [PQRS]=s^2 =x^2 +y^2 =(a−2y)^2 +y^2   (([PQRS])/(ΔABC))=((2s^2 )/a^2 )=((2[(a−2y)^2 +y^2 ])/a^2 )=2[(1−2(y/a))^2 +((y/a))^2 ]    min(([PQRS])/(ΔABC))=(2/5) when y=((2a)/5), x=(a/5).
$${let}\:{AB}={BC}={a} \\ $$$$\Delta_{{ABC}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$$${let}\:{BQ}={x},\:{BP}={y},\:{PQ}={s} \\ $$$${s}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$ \\ $$$${AP}={a}−{y} \\ $$$$\frac{{PS}}{\mathrm{sin}\:\mathrm{45}°}=\frac{{AP}}{\mathrm{sin}\:\left(\mathrm{45}°+\angle{APS}\right)}=\frac{{AP}}{\mathrm{sin}\:\left(\mathrm{45}°+\mathrm{180}°−\mathrm{90}°−\angle{BPQ}\right)} \\ $$$$\frac{{s}}{\mathrm{sin}\:\mathrm{45}°}=\frac{{a}−{y}}{\mathrm{sin}\:\left(\mathrm{45}°+\mathrm{90}°−\angle{BPQ}\right)} \\ $$$$\frac{{s}}{\mathrm{sin}\:\mathrm{45}°}=\frac{{a}−{y}}{\mathrm{cos}\:\left(\mathrm{45}°−\angle{BPQ}\right)} \\ $$$${s}=\frac{{a}−{y}}{\mathrm{cos}\:\angle{BPQ}+\mathrm{sin}\:\angle{BPQ}} \\ $$$$\frac{{a}−{y}}{{s}}=\mathrm{cos}\:\angle{BPQ}+\mathrm{sin}\:\angle{BPQ}=\frac{{x}}{{s}}+\frac{{y}}{{s}} \\ $$$$\Rightarrow{x}+\mathrm{2}{y}={a} \\ $$$${there}\:{are}\:{infinite}\:{possibilities}: \\ $$$$\frac{{a}}{\mathrm{3}}\leqslant{y}\leqslant\frac{{a}}{\mathrm{2}} \\ $$$$ \\ $$$$\left[{PQRS}\right]={s}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left({a}−\mathrm{2}{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\frac{\left[{PQRS}\right]}{\Delta{ABC}}=\frac{\mathrm{2}{s}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{\mathrm{2}\left[\left({a}−\mathrm{2}{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right]}{{a}^{\mathrm{2}} }=\mathrm{2}\left[\left(\mathrm{1}−\mathrm{2}\frac{{y}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{a}}\right)^{\mathrm{2}} \right] \\ $$$$ \\ $$$${min}\frac{\left[{PQRS}\right]}{\Delta{ABC}}=\frac{\mathrm{2}}{\mathrm{5}}\:{when}\:{y}=\frac{\mathrm{2}{a}}{\mathrm{5}},\:{x}=\frac{{a}}{\mathrm{5}}. \\ $$
Commented by TawaTawa1 last updated on 01/Apr/20
God bless you sir, i appreciate.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate}. \\ $$
Commented by mr W last updated on 01/Apr/20
you accepted this answer? but it   doesn′t match the question.
$${you}\:{accepted}\:{this}\:{answer}?\:{but}\:{it}\: \\ $$$${doesn}'{t}\:{match}\:{the}\:{question}. \\ $$
Commented by TawaTawa1 last updated on 01/Apr/20
I agree sir. Thanks again.
$$\mathrm{I}\:\mathrm{agree}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{again}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *