Question Number 86993 by Power last updated on 01/Apr/20
Commented by abdomathmax last updated on 01/Apr/20
$${I}\:=\int_{\mathrm{1}} ^{\mathrm{5}} \left[\mathrm{10}{x}\right]{dx}\:\:{vhangement}\:\mathrm{10}{x}\:={t}\:{give} \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{10}}\:\int_{\mathrm{10}} ^{\mathrm{50}} \left[{t}\right]{dt}\:=\frac{\mathrm{1}}{\mathrm{10}}\sum_{{k}=\mathrm{10}} ^{\mathrm{49}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:{kdt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\:\sum_{{k}=\mathrm{10}} ^{\mathrm{49}} \:{k}\:\:\:\:\:{the}\:{sequence}\:{u}_{{k}} ={k}\:{is}\:{arithmetic}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{10}} ^{\mathrm{49}} \:{u}_{{k}} =\frac{\mathrm{49}−\mathrm{10}+\mathrm{1}}{\mathrm{2}}\left({u}_{\mathrm{10}} \:+{u}_{\mathrm{49}} \right)\:=\mathrm{20}\left(\mathrm{10}+\mathrm{49}\right) \\ $$$$=\mathrm{20}\left(\mathrm{59}\right)\:=\mathrm{1180}\:\Rightarrow{I}\:=\frac{\mathrm{1180}}{\mathrm{10}}\:\Rightarrow{I}\:=\mathrm{118} \\ $$
Answered by TANMAY PANACEA. last updated on 01/Apr/20
$$\int_{\mathrm{1}} ^{\mathrm{1}.\mathrm{1}} \left[\mathrm{10}{x}\right]{dx}+\int_{\mathrm{1}.\mathrm{1}} ^{\mathrm{1}.\mathrm{2}} \left[\mathrm{10}{x}\right]{dx}+\int_{\mathrm{1}.\mathrm{2}} ^{\mathrm{1}.\mathrm{3}} \left[\mathrm{10}{x}\right]{dx}+..+\int_{\mathrm{4}.\mathrm{9}} ^{\mathrm{5}} \left[\mathrm{10}{x}\right] \\ $$$$=\mathrm{0}.\mathrm{1}×\mathrm{10}+\mathrm{0}.\mathrm{1}×\mathrm{11}+…+\mathrm{0}.\mathrm{1}×\mathrm{49} \\ $$$$=\mathrm{0}.\mathrm{1}\left(\mathrm{10}+\mathrm{11}+..+\mathrm{49}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}×\frac{\mathrm{40}}{\mathrm{2}}\left(\mathrm{10}+\mathrm{49}\right)=\mathrm{2}×\mathrm{59}=\mathrm{118} \\ $$$$ \\ $$
Commented by Power last updated on 01/Apr/20
$$\mathrm{thanks} \\ $$
Commented by TANMAY PANACEA. last updated on 01/Apr/20
$${most}\:{welcome}\:{sir} \\ $$