Question Number 87027 by john santu last updated on 02/Apr/20
Answered by som(math1967) last updated on 05/Apr/20
$$\angle{DCO}={alt}\angle{OAP}=\theta\left({let}\right) \\ $$$$\angle{COQ}=\angle{OAP}=\theta \\ $$$${again}\:\angle{ADO}=\angle{DCO}=\theta{ns} \\ $$$$\left[\bigtriangleup{ADO}\sim\bigtriangleup{DCO}\right] \\ $$$${OC}={nsec}\theta\:,{OA}={OPcosec}\theta={cosec}\theta \\ $$$$\:\:\:\:\left[\because{n}={OQ}\right] \\ $$$$\therefore{OC}+{OA}={AC} \\ $$$$\left.{nsec}\theta+{cosec}\theta={d}\:\:…….\mathrm{1}\right) \\ $$$${nowOD}={OCtan}\theta\:\:\left[{from}\bigtriangleup{ODC}\right] \\ $$$$\:{OD}={nsec}\theta{tan}\theta \\ $$$${from}\bigtriangleup{ODA}\:\:{OD}={OAcot}\theta \\ $$$$\:\therefore{OD}={cosec}\theta{cot}\theta \\ $$$${nsec}\theta{tan}\theta={cosec}\theta{cot}\theta \\ $$$${ntan}^{\mathrm{2}} \theta={cot}\theta \\ $$$${tan}^{\mathrm{3}} \theta=\frac{\mathrm{1}}{{n}}\:\:{tan}\theta=\left(\frac{\mathrm{1}}{{n}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\therefore{sec}\theta=\frac{\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{{n}^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$${cosec}\theta=\frac{\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}} \\ $$$$\left.{from}\:\mathrm{1}\right)\:{nsec}\theta+{cosec}\theta={d} \\ $$$${n}.\frac{\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{{n}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:+\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={d} \\ $$$${n}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} +\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={d} \\ $$$$\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)={d} \\ $$$$\left(\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} ={d} \\ $$$$\therefore\mathrm{1}+{n}^{\frac{\mathrm{2}}{\mathrm{3}}} ={d}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$ \\ $$