Menu Close

Question-87027




Question Number 87027 by john santu last updated on 02/Apr/20
Answered by som(math1967) last updated on 05/Apr/20
∠DCO=alt∠OAP=θ(let)  ∠COQ=∠OAP=θ  again ∠ADO=∠DCO=θns  [△ADO∼△DCO]  OC=nsecθ ,OA=OPcosecθ=cosecθ      [∵n=OQ]  ∴OC+OA=AC  nsecθ+cosecθ=d  .......1)  nowOD=OCtanθ  [from△ODC]   OD=nsecθtanθ  from△ODA  OD=OAcotθ   ∴OD=cosecθcotθ  nsecθtanθ=cosecθcotθ  ntan^2 θ=cotθ  tan^3 θ=(1/n)  tanθ=((1/n))^(1/3)   ∴secθ=(((1+n^(2/3) )^(1/2) )/n^(1/3) )  cosecθ=(((1+n^(2/3) )^(1/2) )/1)  from 1) nsecθ+cosecθ=d  n.(((1+n^(2/3) )^(1/2) )/n^(1/3) ) +(1+n^(2/3) )^(1/2) =d  n^(2/3) (1+n^(2/3) )^(1/2) +(1+n^(2/3) )^(1/2) =d  (1+n^(2/3) )^(1/2) (1+n^(2/3) )=d  (1+n^(2/3) )^(3/2) =d  ∴1+n^(2/3) =d^(2/3)
DCO=altOAP=θ(let)COQ=OAP=θagainADO=DCO=θns[ADODCO]OC=nsecθ,OA=OPcosecθ=cosecθ[n=OQ]OC+OA=ACnsecθ+cosecθ=d.1)nowOD=OCtanθ[fromODC]OD=nsecθtanθfromODAOD=OAcotθOD=cosecθcotθnsecθtanθ=cosecθcotθntan2θ=cotθtan3θ=1ntanθ=(1n)13secθ=(1+n23)12n13cosecθ=(1+n23)121from1)nsecθ+cosecθ=dn.(1+n23)12n13+(1+n23)12=dn23(1+n23)12+(1+n23)12=d(1+n23)12(1+n23)=d(1+n23)32=d1+n23=d23

Leave a Reply

Your email address will not be published. Required fields are marked *