Menu Close

Question-87222




Question Number 87222 by TawaTawa1 last updated on 03/Apr/20
Commented by TawaTawa1 last updated on 03/Apr/20
Circles  ω_1   and  ω_2   intersect each other at points  A  and  B.  Point  C  lies on the tangent line from  A  to  ω_1   such that  ∠ABC  =  90°.  Arbitrary line  L  passes through  C  and  cuts  ω_2   at points  P  and  Q.  Lines  AP  and  AQ  cut   ω_1   for the second time at points  X  and  Z  respectively. Let  Y  be the foot of altitude from  A  to  L.  Prove that points   X,  Y  and  Z   are collinear.
$$\mathrm{Circles}\:\:\omega_{\mathrm{1}} \:\:\mathrm{and}\:\:\omega_{\mathrm{2}} \:\:\mathrm{intersect}\:\mathrm{each}\:\mathrm{other}\:\mathrm{at}\:\mathrm{points}\:\:\mathrm{A}\:\:\mathrm{and}\:\:\mathrm{B}. \\ $$$$\mathrm{Point}\:\:\mathrm{C}\:\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{from}\:\:\mathrm{A}\:\:\mathrm{to}\:\:\omega_{\mathrm{1}} \:\:\mathrm{such}\:\mathrm{that} \\ $$$$\angle\mathrm{ABC}\:\:=\:\:\mathrm{90}°.\:\:\mathrm{Arbitrary}\:\mathrm{line}\:\:\mathrm{L}\:\:\mathrm{passes}\:\mathrm{through}\:\:\mathrm{C}\:\:\mathrm{and} \\ $$$$\mathrm{cuts}\:\:\omega_{\mathrm{2}} \:\:\mathrm{at}\:\mathrm{points}\:\:\mathrm{P}\:\:\mathrm{and}\:\:\mathrm{Q}.\:\:\mathrm{Lines}\:\:\mathrm{AP}\:\:\mathrm{and}\:\:\mathrm{AQ}\:\:\mathrm{cut}\:\:\:\omega_{\mathrm{1}} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{second}\:\mathrm{time}\:\mathrm{at}\:\mathrm{points}\:\:\mathrm{X}\:\:\mathrm{and}\:\:\mathrm{Z}\:\:\mathrm{respectively}.\:\mathrm{Let} \\ $$$$\mathrm{Y}\:\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{altitude}\:\mathrm{from}\:\:\mathrm{A}\:\:\mathrm{to}\:\:\mathrm{L}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{points}\:\:\:\mathrm{X},\:\:\mathrm{Y}\:\:\mathrm{and}\:\:\mathrm{Z}\:\:\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *