Menu Close

Question-87556




Question Number 87556 by M±th+et£s last updated on 05/Apr/20
Commented by jagoll last updated on 05/Apr/20
x^3 −2x^2 +7x−1 = a(x−2)^2 +  b(x−3)(x−2)^2 +c(x−3)^2 (x−2)^2 +  d(x−3)^3 +e(x−3)^3 (x−2)
$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}\:=\:\mathrm{a}\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} + \\ $$$$\mathrm{b}\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{c}\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} + \\ $$$$\mathrm{d}\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{3}} +\mathrm{e}\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{3}} \left(\mathrm{x}−\mathrm{2}\right) \\ $$
Answered by $@ty@m123 last updated on 05/Apr/20
Let ((x^3 −2x^2 +7x−1)/((x−3)^3 (x−2)^2 ))=(A/((x−3)^3 ))+(B/((x−3)^2 ))                             +(C/((x−3)))+(D/((x−2)^2 ))+(E/(x−2))  ⇒A(x−2)^2 +B(x−3)(x−2)^2 +C(x−3)^2 (x−2)^2                  +D(x−3)^2 +E(x−3)^3 (x−2)=                                      x^3 −2x^2 +7x−1 ....(i)  Put x=0 in (i)  ⇒4A+12B+36C+9D+54E=−1 ...(ii)  Put x=1 in (i)  A−2B+4C+4D−8E=5 ....(iii)  Put x=2 in (i)  D=8−8+14−1=13  Put x=3 in (i)  A=27−18+20=29  Now do it yourself:  ■ Put values of A & D in (ii) &(iii)   and form equation (iv) &(v)  ■ Put x=4 in (i) and form equation (vi)  ■ Solve (iv), (v) &(vi) for B, C &E using  Cramer′s Rule.
$${Let}\:\frac{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} }=\frac{{A}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} }+\frac{{B}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{C}}{\left({x}−\mathrm{3}\right)}+\frac{{D}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }+\frac{{E}}{{x}−\mathrm{2}} \\ $$$$\Rightarrow{A}\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{B}\left({x}−\mathrm{3}\right)\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{C}\left({x}−\mathrm{3}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{D}\left({x}−\mathrm{3}\right)^{\mathrm{2}} +{E}\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}\:….\left({i}\right) \\ $$$${Put}\:{x}=\mathrm{0}\:{in}\:\left({i}\right) \\ $$$$\Rightarrow\mathrm{4}{A}+\mathrm{12}{B}+\mathrm{36}{C}+\mathrm{9}{D}+\mathrm{54}{E}=−\mathrm{1}\:…\left({ii}\right) \\ $$$${Put}\:{x}=\mathrm{1}\:{in}\:\left({i}\right) \\ $$$${A}−\mathrm{2}{B}+\mathrm{4}{C}+\mathrm{4}{D}−\mathrm{8}{E}=\mathrm{5}\:….\left({iii}\right) \\ $$$${Put}\:{x}=\mathrm{2}\:{in}\:\left({i}\right) \\ $$$${D}=\mathrm{8}−\mathrm{8}+\mathrm{14}−\mathrm{1}=\mathrm{13} \\ $$$${Put}\:{x}=\mathrm{3}\:{in}\:\left({i}\right) \\ $$$${A}=\mathrm{27}−\mathrm{18}+\mathrm{20}=\mathrm{29} \\ $$$${Now}\:{do}\:{it}\:{yourself}: \\ $$$$\blacksquare\:{Put}\:{values}\:{of}\:{A}\:\&\:{D}\:{in}\:\left({ii}\right)\:\&\left({iii}\right) \\ $$$$\:{and}\:{form}\:{equation}\:\left({iv}\right)\:\&\left({v}\right) \\ $$$$\blacksquare\:{Put}\:{x}=\mathrm{4}\:{in}\:\left({i}\right)\:{and}\:{form}\:{equation}\:\left({vi}\right) \\ $$$$\blacksquare\:{Solve}\:\left({iv}\right),\:\left({v}\right)\:\&\left({vi}\right)\:{for}\:{B},\:{C}\:\&{E}\:{using} \\ $$$${Cramer}'{s}\:{Rule}. \\ $$
Commented by peter frank last updated on 05/Apr/20
thank you
$${thank}\:{you} \\ $$
Commented by M±th+et£s last updated on 05/Apr/20
god bless you sir
$${god}\:{bless}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *