Menu Close

Question-87939




Question Number 87939 by ajfour last updated on 07/Apr/20
Commented by naka3546 last updated on 07/Apr/20
what′s  the  question , sir ?
whatsthequestion,sir?
Commented by ajfour last updated on 07/Apr/20
If each coloured region has unit  area, name the coloured regions   that have the largest perimeter,   and the smallest.  (wont edit any more!)
Ifeachcolouredregionhasunitarea,namethecolouredregionsthathavethelargestperimeter,andthesmallest.(wonteditanymore!)
Commented by ajfour last updated on 07/Apr/20
overall figure is a square.
overallfigureisasquare.
Commented by Tony Lin last updated on 07/Apr/20
Commented by Tony Lin last updated on 07/Apr/20
(1/2)×(√3)((√3)−((2(√3))/3))=(1/2)  =half of the green area  the hypotenuse of brown area is  (√(((√3))^2 +(((2(√3))/3))^2 ))=((√(39))/3)  the blue one and half of the green one  share the same height  ⇒ratio of the bottom side is 2   ⇒bottom side of the blue one is ((2(√(39)))/9)                                        the green one is ((√(39))/9)  blue area=1=(1/2)×(√3)×((2(√(39)))/9)sinθ  ⇒sinθ=(3/( (√(13))))→cosθ=(2/( (√(13))))  l^2 =((√3))^2 +(((2(√(39)))/9))^2 −2×(√3)×((2(√(39)))/9)×(2/( (√(13))))  =((61)/(27))  ⇒l=((√(183))/9)  brown perimeter  =(√3)+((2(√3))/3)+((√(39))/3)=((5(√3)+(√(39)))/3)≈4.9684  green perimeter  =(√3)+((√3)−((2(√3))/3))+((√(39))/9)+((√(183))/9)  =((12(√3)+(√(39))+(√(183)))/9)≈4.5064  blue perimeter  =(√3)+((2(√(39)))/9)+((√(183))/9)  =((9(√3)+2(√(39))+(√(183)))/9)≈4.6229
12×3(3233)=12=halfofthegreenareathehypotenuseofbrownareais(3)2+(233)2=393theblueoneandhalfofthegreenonesharethesameheightratioofthebottomsideis2bottomsideoftheblueoneis2399thegreenoneis399bluearea=1=12×3×2399sinθsinθ=313cosθ=213l2=(3)2+(2399)22×3×2399×213=6127l=1839brownperimeter=3+233+393=53+3934.9684greenperimeter=3+(3233)+399+1839=123+39+18394.5064blueperimeter=3+2399+1839=93+239+18394.6229
Commented by ajfour last updated on 07/Apr/20
Thanks Sir, perfect!
ThanksSir,perfect!
Commented by ajfour last updated on 07/Apr/20
Commented by ajfour last updated on 07/Apr/20
square side s=(√3)  BE=(2/( (√3))) =GM=p  AE=(√(3+(4/3))) = ((√(39))/3)  AM=(p/s)(AE) =(2/3)(((√(39))/3))=((2(√(39)))/9)  (q/p)=((BE)/s)⇒  q=(2/3)×(2/( (√3))) = ((4(√3))/9)  MD=(√(p^2 +(s−q)^2 ))           =(√((4/3)+((√3)−((4(√3))/9))^2 ))           =((√(183))/9)  CE=(√3)−(2/( (√3))) = ((√3)/3)  ME=AE−AM=((√(39))/9)  perimeter(brown)=(√3)+(2/( (√3)))+((√(39))/3)          ≈ 4.9684  (blue)=(√3)+((2(√(39)))/9)+((√(183))/9)           ≈ 4.6229  (green)=(√3)+((√3)/3)+((√(39))/9)+((√(183))/9)           ≈ 4.5064  so perimeters of    (brown) > (blue) > (green)
squaresides=3BE=23=GM=pAE=3+43=393AM=ps(AE)=23(393)=2399qp=BEsq=23×23=439MD=p2+(sq)2=43+(3439)2=1839CE=323=33ME=AEAM=399perimeter(brown)=3+23+3934.9684(blue)=3+2399+18394.6229(green)=3+33+399+18394.5064soperimetersof(brown)>(blue)>(green)
Commented by $@ty@m123 last updated on 07/Apr/20
ar(ABCD)=3 sq. unit  ∴ each side=(√3) unit   ...(i)  ar(AEB)=1 sq. unit  (1/2)×AB×EB=1  (1/2)×(√3)×EB=1  EB=(2/( (√3)))  ....(ii)  (1/2)×AD×GM=1  GM=(2/( (√3)))  ...(iii)  (Pl. ignore this comment)
ar(ABCD)=3sq.uniteachside=3unit(i)ar(AEB)=1sq.unit12×AB×EB=112×3×EB=1EB=23.(ii)12×AD×GM=1GM=23(iii)(Pl.ignorethiscomment)

Leave a Reply

Your email address will not be published. Required fields are marked *