Question Number 87952 by ajfour last updated on 07/Apr/20
Commented by ajfour last updated on 07/Apr/20
$${what}\:{is}\:{c}\:?\:\:{Sir}. \\ $$
Commented by ajfour last updated on 07/Apr/20
$${Find}\:{equation}\:{of}\:{line}\:{ABCD}\:{in} \\ $$$${terms}\:{of}\:{ellipse}\:{parameters} \\ $$$${a}\:{and}\:{b}. \\ $$
Commented by Prithwish Sen 1 last updated on 07/Apr/20
$$\mathrm{I}\:\mathrm{got} \\ $$$$\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{c}}\:=\:\frac{\boldsymbol{\mathrm{b}}}{\boldsymbol{\mathrm{a}}}.\sqrt{\frac{\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{9}\boldsymbol{\mathrm{c}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\:}.\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$
Commented by john santu last updated on 07/Apr/20
$$\mathrm{c}\:=\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} } \\ $$
Commented by Prithwish Sen 1 last updated on 07/Apr/20
$$\mathrm{D}\left(\mathrm{acos}\theta,\mathrm{bsin}\theta\right)\:\:\:\mathrm{A}\left(\mathrm{acos}\alpha,\:−\mathrm{bsin}\alpha\right) \\ $$$$\mathrm{Considering}\:\mathrm{C} \\ $$$$\mathrm{2sin}\theta\:−\:\mathrm{sin}\alpha\:=\mathrm{0}…\mathrm{i} \\ $$$$\mathrm{and}\:\mathrm{considering}\:\mathrm{B}\:\:\:\mathrm{cos}\theta\:+\mathrm{2cos}\alpha\:=\:\mathrm{0}…\mathrm{ii} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{is} \\ $$$$\mathrm{y}−\mathrm{bsin}\theta\:=\:\frac{\mathrm{b}\left(\mathrm{sin}\theta+\mathrm{sin}\alpha\right)}{\mathrm{a}\left(\mathrm{cos}\theta−\mathrm{cos}\alpha\right)}\:\left(\mathrm{x}−\mathrm{axcos}\theta\right)…\mathrm{iii} \\ $$$$\mathrm{solving}\:\mathrm{the}\:\mathrm{three}\:\mathrm{equations}\: \\ $$$$\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}\boldsymbol{\mathrm{a}}}\:−\:\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$$$ \\ $$$$ \\ $$
Answered by ajfour last updated on 07/Apr/20
$${Let}\:\underset{−} {{eq}.\:{of}\:{line}}\:{be} \\ $$$$\frac{{x}}{{p}}−\frac{{y}}{{q}}=\mathrm{1}\:\:\:,\:{slope}\:{m}=\frac{{q}}{{p}} \\ $$$${l}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} } \\ $$$${D}\equiv\left(\mathrm{2}{p},{q}\right)\:\:\:;\:\:{A}\equiv\left(−{p},−\mathrm{2}{q}\right) \\ $$$$\frac{\mathrm{4}{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\&\:\:\frac{{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\mathrm{4}{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\mathrm{15}{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{3}\:\:\Rightarrow\:\:{p}=\frac{{a}}{\:\sqrt{\mathrm{5}}} \\ $$$$\&\:\:\:\frac{\mathrm{15}{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{3}\:\:\Rightarrow\:\:{q}=\frac{{b}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow\:\:{eq}.\:{of}\:{line}\:{is} \\ $$$$\:\:\:\:\:\frac{{x}}{{a}}−\frac{{y}}{{b}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:. \\ $$
Commented by ajfour last updated on 07/Apr/20
$${Sen}\:{Sir},\:{please}\:{check}\:{my}\:{sol}^{{n}} . \\ $$
Commented by Prithwish Sen 1 last updated on 07/Apr/20
$$\mathrm{sir}\:\mathrm{yours}\:\mathrm{is}\:\mathrm{right}\:\mathrm{but}\:\mathrm{please}\:\mathrm{check}\:\mathrm{mine}.\:\mathrm{I}\:\mathrm{cannot} \\ $$$$\mathrm{find}\:\mathrm{any}\:\mathrm{wrong}\:\mathrm{in}\:\mathrm{my}\:\mathrm{calculation}.\:\mathrm{please}\:\mathrm{help} \\ $$