Menu Close

Question-88218




Question Number 88218 by mathocean1 last updated on 09/Apr/20
Commented by mathocean1 last updated on 09/Apr/20
This is face view of an evacuation   canal. It has a trapeze form. 4m  represents its small base.  1) Determinate  θ ∈ [60;90] such as the   capacity of canal is maximal.
Thisisfaceviewofanevacuationcanal.Ithasatrapezeform.4mrepresentsitssmallbase.1)Determinateθ[60;90]suchasthecapacityofcanalismaximal.
Commented by mathocean1 last updated on 09/Apr/20
Answered by ajfour last updated on 12/Apr/20
A=(1/2)(2sin θ)(4+4+4cos θ)  ⇒  A=8sin θ+4sin θcos θ     (dA/dθ)=8cos θ+4(d/dθ)(sin θcos θ)    = 8cos θ+4{cos θ(d/dθ)(sin θ)+sin θ(d/dθ)(cos θ)}    = 8cos θ+4(cos^2 θ−sin^2 θ)  (dA/dθ)= 8cos θ+4cos^2 θ−4sin^2 θ=0  let cos θ=t  8t+4t^2 +4t^2 −4=0  2t^2 +2t−1=0  t=−(1/2)+((√3)/2)  θ=cos^(−1) ((((√3)−1)/2))≈ 68.5293° .
A=12(2sinθ)(4+4+4cosθ)A=8sinθ+4sinθcosθdAdθ=8cosθ+4ddθ(sinθcosθ)=8cosθ+4{cosθddθ(sinθ)+sinθddθ(cosθ)}=8cosθ+4(cos2θsin2θ)dAdθ=8cosθ+4cos2θ4sin2θ=0letcosθ=t8t+4t2+4t24=02t2+2t1=0t=12+32θ=cos1(312)68.5293°.
Commented by mathocean1 last updated on 12/Apr/20
please sir can you explain the 2^(nd )  line.
pleasesircanyouexplainthe2ndline.
Commented by mathocean1 last updated on 12/Apr/20
Thanks sir i have understood...  it′s great.
Thankssirihaveunderstooditsgreat.

Leave a Reply

Your email address will not be published. Required fields are marked *