Menu Close

Question-88261




Question Number 88261 by ar247 last updated on 09/Apr/20
Answered by Joel578 last updated on 09/Apr/20
u ≡ v (mod m) ⇒ u − v = mx, x ∈ Z  (1) u = mx + v  Since gcf(v,m) divides both v and m, it also divides u,  hence gcf(v,m) divides gcf(u,m)  ⇒ gcf(v,m) ∣ gcf(u,m)    (2) v = u − mx  Since gcf(u,m) divides both u and m, it also divides v,  hence gcf(u,m) divides gcf(v,m)  ⇒ gcf(u,m) ∣ gcf(v,m)    We know if  a∣b  and  b∣a, then a = b or a = −b.  In our case, obviously gcf(u,m) = gcf(v,m), since  gcf(p,q) can′t be negative
$${u}\:\equiv\:{v}\:\left(\mathrm{mod}\:{m}\right)\:\Rightarrow\:{u}\:−\:{v}\:=\:{mx},\:{x}\:\in\:\mathbb{Z} \\ $$$$\left(\mathrm{1}\right)\:{u}\:=\:{mx}\:+\:{v} \\ $$$$\mathrm{Since}\:\mathrm{gcf}\left({v},{m}\right)\:\mathrm{divides}\:\mathrm{both}\:{v}\:\mathrm{and}\:\mathrm{m},\:\mathrm{it}\:\mathrm{also}\:\mathrm{divides}\:{u}, \\ $$$$\mathrm{hence}\:\mathrm{gcf}\left({v},{m}\right)\:\mathrm{divides}\:\mathrm{gcf}\left({u},{m}\right) \\ $$$$\Rightarrow\:\mathrm{gcf}\left({v},{m}\right)\:\mid\:\mathrm{gcf}\left({u},{m}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{v}\:=\:{u}\:−\:{mx} \\ $$$$\mathrm{Since}\:\mathrm{gcf}\left({u},{m}\right)\:\mathrm{divides}\:\mathrm{both}\:{u}\:\mathrm{and}\:\mathrm{m},\:\mathrm{it}\:\mathrm{also}\:\mathrm{divides}\:{v}, \\ $$$$\mathrm{hence}\:\mathrm{gcf}\left({u},{m}\right)\:\mathrm{divides}\:\mathrm{gcf}\left({v},{m}\right) \\ $$$$\Rightarrow\:\mathrm{gcf}\left({u},{m}\right)\:\mid\:\mathrm{gcf}\left({v},{m}\right) \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{know}\:\mathrm{if}\:\:{a}\mid{b}\:\:\mathrm{and}\:\:{b}\mid{a},\:\mathrm{then}\:{a}\:=\:{b}\:\mathrm{or}\:{a}\:=\:−{b}. \\ $$$$\mathrm{In}\:\mathrm{our}\:\mathrm{case},\:\mathrm{obviously}\:\mathrm{gcf}\left({u},{m}\right)\:=\:\mathrm{gcf}\left({v},{m}\right),\:\mathrm{since} \\ $$$$\mathrm{gcf}\left({p},{q}\right)\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{negative} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *