Menu Close

Question-88310




Question Number 88310 by ajfour last updated on 09/Apr/20
Commented by ajfour last updated on 09/Apr/20
Q.88272 (revisited)
Q.88272(revisited)
Answered by ajfour last updated on 10/Apr/20
h^2 +k^2 =r^2   y^2 =b^2 (1−(((x−a)^2 )/a^2 ))       [ellipse]  x^2 +y^2 −2hx−2ky=0   [circle]  (x^2 +y^2 −2hx)^2 =4(r^2 −h^2 )y^2   ⇒  {x^2 +b^2 (1−(((x−a)^2 )/a^2 ))−2hx}^2         = 4(r^2 −h^2 )b^2 (1−(((x−a)^2 )/a^2 ))  roots of above eq. are  x_1 =0 , x_2 =2h, x_3 =x_4 =t  first we eliminate x=0,  then determine h(r).  then eliminate t and  eventually find r.   ....  let (x/a)=X, (h/a)=s, (b^2 /a^2 )=q,  (t/a)=m,  (r/a)=R .   {X^2 +q(2X−X^2 )−2sX}^2        = 4(R^2 −s^2 )q(2X−X^2 )  ⇒ X{X+q(2−X)−2s}^2          =4q(R^2 −s^2 )(2−X)  roots are now  X=2s, m,m.  lets put X=2s  ⇒qs(1−s)=(R^2 −s^2 )  ⇒  R^2 =(1−q)s^2 +qs      ...(I)  And  R^2 −s^2 =qs(1−s)   ...(II)  now generally  (1−q)^2 X^3 +4(1−q)(q−s)X^2 +4(q−s)^2 X    +4q(R^2 −s^2 )X−8q(R^2 −s^2 )=0  ⇒  (1−q)^2 X^3 +4(1−q)(q−s)X^2     +4{(q−s)^2 +q(R^2 −s^2 )}X    −8q(R^2 −s^2 )=0   2m+2s=−((4(q−s))/((1−q)))    ...(i)  2m^2 s=((8q(R^2 −s^2 ))/((1−q)^2 ))    ...(ii)  ⇒   s{((2(s−q))/((1−q)))−s}^2 =((4q(R^2 −s^2 ))/((1−q)^2 ))  now using (II)  ⇒   s{((2(s−q))/((1−q)))−s}^2 =((4q(qs)(1−s))/((1−q)^2 ))  ⇒ {((2(s−q))/((1−q)))−s}^2 =((4q^2 (1−s))/((1−q)^2 ))  ⇒{(1+q)s−2q}^2         =4q^2 (1−s)  (1+q)^2 s^2 −4qs=0      and as s≠0  s=((4q)/((1+q)^2 ))   Now using (I)  ⇒  R=(√((1−q)s^2 +qs ))    ⇒ R = (√(((16(1−q)q^2 )/((1+q)^4 ))+((4q^2 )/((1+q)^2 ))))  or   R=((2q(√((1−q)^2 +4)))/((1+q)^2 ))  for example if a=4, b=3  q=(9/(16)),   R=((18(√(1073)))/(625)) ≈ 0.9434  ...
h2+k2=r2y2=b2(1(xa)2a2)[ellipse]x2+y22hx2ky=0[circle](x2+y22hx)2=4(r2h2)y2{x2+b2(1(xa)2a2)2hx}2=4(r2h2)b2(1(xa)2a2)rootsofaboveeq.arex1=0,x2=2h,x3=x4=tfirstweeliminatex=0,thendetermineh(r).theneliminatetandeventuallyfindr..letxa=X,ha=s,b2a2=q,ta=m,ra=R.{X2+q(2XX2)2sX}2=4(R2s2)q(2XX2)X{X+q(2X)2s}2=4q(R2s2)(2X)rootsarenowX=2s,m,m.letsputX=2sqs(1s)=(R2s2)R2=(1q)s2+qs(I)AndR2s2=qs(1s)(II)nowgenerally(1q)2X3+4(1q)(qs)X2+4(qs)2X+4q(R2s2)X8q(R2s2)=0(1q)2X3+4(1q)(qs)X2+4{(qs)2+q(R2s2)}X8q(R2s2)=02m+2s=4(qs)(1q)(i)2m2s=8q(R2s2)(1q)2(ii)s{2(sq)(1q)s}2=4q(R2s2)(1q)2nowusing(II)s{2(sq)(1q)s}2=4q(qs)(1s)(1q)2{2(sq)(1q)s}2=4q2(1s)(1q)2{(1+q)s2q}2=4q2(1s)(1+q)2s24qs=0andass0s=4q(1+q)2Nowusing(I)R=(1q)s2+qsR=16(1q)q2(1+q)4+4q2(1+q)2orR=2q(1q)2+4(1+q)2forexampleifa=4,b=3q=916,R=1810736250.9434
Commented by mr W last updated on 10/Apr/20
it′s perfectly solved!
itsperfectlysolved!
Commented by ajfour last updated on 10/Apr/20
great, thanks for the confirmation,  Sir, I′m too glad i cud solve it.
great,thanksfortheconfirmation,Sir,Imtoogladicudsolveit.
Commented by mr W last updated on 09/Apr/20
that′s right sir.
thatsrightsir.
Commented by ajfour last updated on 10/Apr/20
thanks to mjS Sir.
thankstomjSSir.
Commented by ajfour last updated on 10/Apr/20
Commented by MJS last updated on 10/Apr/20
I tried the same path I used with the parabola  and also get R=((18(√(1073)))/(625)) for (a/b)=(4/3) but there  should be a scaling factor, I calculated with  a=1∧b=(3/4)
ItriedthesamepathIusedwiththeparabolaandalsogetR=181073625forab=43butthereshouldbeascalingfactor,Icalculatedwitha=1b=34
Commented by ajfour last updated on 10/Apr/20
so our answer should be right  then..?  required radius r=aR, Sir.
soouranswershouldberightthen..?requiredradiusr=aR,Sir.
Commented by mr W last updated on 10/Apr/20
i checked my result again and found  an error. now we have the same result.
icheckedmyresultagainandfoundanerror.nowwehavethesameresult.

Leave a Reply

Your email address will not be published. Required fields are marked *