Question Number 88613 by ajfour last updated on 11/Apr/20
Commented by ajfour last updated on 11/Apr/20
$${Find}\:{a}/{b}\:. \\ $$
Commented by ajfour last updated on 11/Apr/20
$$\left({circle}\:{should}\:{have}\:{been}\:{bit}\:{larger}\right) \\ $$
Commented by ajfour last updated on 11/Apr/20
$${sir}\:{i}\:{got}\:\frac{{a}}{{b}}=\:\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\:. \\ $$
Answered by mr W last updated on 11/Apr/20
$${intersection}\:{of}\:{circle}\:{and}\:{ellipse}\:{at} \\ $$$${point}\:{P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\frac{{a}\:\mathrm{cos}\:\theta}{{b}+{b}\:\mathrm{sin}\:\theta}=\frac{{b}\:\mathrm{cos}\:\theta}{{a}\:\mathrm{sin}\:\theta} \\ $$$${with}\:\mu=\frac{{b}}{{a}} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}=\frac{\mu^{\mathrm{2}} }{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mu^{\mathrm{2}} }{\mathrm{1}−\mu^{\mathrm{2}} }\:\:\:\:\:\left(\mu\neq\mathrm{1}\right) \\ $$$$\left({a}−{b}\:\mathrm{sin}\:\theta\right)\left({b}+{b}\:\mathrm{sin}\:\theta\right)={a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$$\mu\left(\mathrm{1}−\mu\:\mathrm{sin}\:\theta\right)=\mathrm{1}−\mathrm{sin}\:\theta \\ $$$$\mu\left(\mathrm{1}−\frac{\mu^{\mathrm{3}} }{\mathrm{1}−\mu^{\mathrm{2}} }\right)=\mathrm{1}−\frac{\mu^{\mathrm{2}} }{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\Rightarrow\mu^{\mathrm{4}} +\mu^{\mathrm{3}} −\mathrm{2}\mu^{\mathrm{2}} −\mu+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mu−\mathrm{1}\right)\left(\mu+\mathrm{1}\right)\left(\mu^{\mathrm{2}} +\mu−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mu=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 11/Apr/20
$${till}\:\mathrm{sin}\:\theta=\:\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\:\:\left({i}\:{agree}\:{sir}\right). \\ $$$${then}\:{i}\:{wrote}\:{eq}.\:{of}\:{tangent}\:{to} \\ $$$${ellipse} \\ $$$$\:\:\frac{{x}}{{a}}\mathrm{cos}\:\theta+\frac{{y}}{{b}}\mathrm{sin}\:\theta=\mathrm{1} \\ $$$${its}\:{y}_{{intercept}} \:=\:{radius}\:=\:{a} \\ $$$$\Rightarrow\:\:\:\frac{{a}}{{b}}\mathrm{sin}\:\theta=\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{a}}{{b}}\left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$${let}\:\:\frac{{a}}{{b}}={m} \\ $$$$\Rightarrow\:\:\:{m}={m}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\:\:{m}^{\mathrm{2}} −{m}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:{m}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:. \\ $$$$ \\ $$
Commented by mr W last updated on 11/Apr/20
Commented by mr W last updated on 11/Apr/20
$${it}'{s}\:{a}\:{nice}\:{question}\:{sir}! \\ $$