Question Number 88708 by ajfour last updated on 12/Apr/20
Commented by ajfour last updated on 12/Apr/20
$${If}\:\:{AE}={BF}\:,\:{find}\:{r}/{R}. \\ $$
Commented by mr W last updated on 12/Apr/20
$${AE}={FB}={k} \\ $$$$\left(\mathrm{2}{R}−{k}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} =\left({k}+{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{R}^{\mathrm{2}} =\left(\mathrm{2}{R}+{r}\right){k} \\ $$$$\Rightarrow{k}=\frac{\mathrm{2}{R}^{\mathrm{2}} }{\mathrm{2}{R}+{r}} \\ $$$$\frac{{r}}{{k}+{r}}=\frac{\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\left(\mathrm{2}{r}+{k}\right)^{\mathrm{2}} }}{\mathrm{2}{R}}=\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}+\frac{{k}}{\mathrm{2}{R}}\right)^{\mathrm{2}} } \\ $$$$\left(\frac{\mathrm{1}}{\frac{{k}}{{r}}+\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{1}−\left(\frac{{r}}{{R}}+\frac{{k}}{\mathrm{2}{R}}\right)^{\mathrm{2}} \\ $$$${with}\:\lambda=\frac{{r}}{{R}} \\ $$$$\left(\frac{\mathrm{1}}{\frac{\mathrm{2}}{\left(\mathrm{2}+\lambda\right)\lambda}+\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{1}−\left(\lambda+\frac{\mathrm{1}}{\mathrm{2}+\lambda}\right)^{\mathrm{2}} \\ $$$$\lambda^{\mathrm{2}} \left(\mathrm{2}+\lambda\right)^{\mathrm{4}} =\left(\lambda^{\mathrm{2}} +\mathrm{2}\lambda+\mathrm{2}\right)^{\mathrm{2}} \left[\left(\lambda+\mathrm{2}\right)^{\mathrm{2}} −\left(\lambda+\mathrm{1}\right)^{\mathrm{4}} \right] \\ $$$$\left(\lambda+\mathrm{1}\right)^{\mathrm{2}} \left(\lambda^{\mathrm{3}} +\mathrm{3}\lambda^{\mathrm{2}} +\mathrm{2}\lambda−\mathrm{2}\right)\left(\lambda^{\mathrm{3}} +\mathrm{3}\lambda^{\mathrm{2}} +\mathrm{6}\lambda+\mathrm{6}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{52138} \\ $$
Commented by john santu last updated on 12/Apr/20
Commented by ajfour last updated on 12/Apr/20
$${Thanks}\:{for}\:{confirmation}\:{Sir}. \\ $$$${Nice}\:{solution}. \\ $$
Commented by john santu last updated on 12/Apr/20
$${let}\:{me}\:{try}\: \\ $$$${let}\:{AE}\:=\:{BF}\:=\:{x}\: \\ $$$$\mathrm{sin}\:\theta\:=\:\mathrm{sin}\:\theta \\ $$$$\frac{{r}}{{r}+{x}}\:=\:\frac{{BD}}{\mathrm{2}{R}}\:\left({i}\right) \\ $$$${BD}\:=\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} } \\ $$$${r}+{x}\:=\:\sqrt{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{r}}{\:\sqrt{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }}\:=\:\frac{\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} }}{\mathrm{2}{R}} \\ $$$$\frac{{r}^{\mathrm{2}} }{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\:=\:\frac{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} } \\ $$$$ \\ $$
Answered by mahdi last updated on 12/Apr/20