Question Number 88867 by liki last updated on 13/Apr/20
Commented by liki last updated on 13/Apr/20
$$..{help}\:{me}\:{please}\:{question}\:{roman}\:{i},{ii}\:\&\:{ii} \\ $$
Answered by TANMAY PANACEA. last updated on 13/Apr/20
$${acos}\theta+{bsin}\theta={c} \\ $$$${t}={tan}\frac{\theta}{\mathrm{2}} \\ $$$${a}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)+{b}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)={c} \\ $$$${a}−{at}^{\mathrm{2}} +\mathrm{2}{bt}={c}+{ct}^{\mathrm{2}} \\ $$$${t}^{\mathrm{2}} \left({a}+{c}\right)+{t}\left(−\mathrm{2}{b}\right)+\left({c}−{a}\right)=\mathrm{0} \\ $$$${t}_{\mathrm{1}} +{t}_{\mathrm{2}} =\frac{\mathrm{2}{b}\:\:}{{a}+{c}}\:\:\:{and}\:\:{t}_{\mathrm{1}} {t}_{\mathrm{2}} =\frac{{c}−{a}}{{c}+{a}} \\ $$$${t}_{\mathrm{1}} ={tan}\left(\frac{\alpha}{\mathrm{2}}\right)\:\:\:{t}_{\mathrm{2}} ={tan}\left(\frac{\beta}{\mathrm{2}}\right) \\ $$$${sin}\left(\alpha+\beta\right)={sin}\mathrm{2}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)=\frac{\mathrm{2}{tan}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{\alpha+\beta}{\mathrm{2}}\right)} \\ $$$${now}\:{sin}\left(\alpha+\beta\right)=\frac{\mathrm{2}×\frac{{tan}\frac{\alpha}{\mathrm{2}}+{tan}\frac{\beta}{\mathrm{2}}}{\mathrm{1}−{tan}\frac{\alpha}{\mathrm{2}}.{tan}\frac{\beta}{\mathrm{2}}}}{\mathrm{1}+\left(\frac{{tan}\frac{\alpha}{\mathrm{2}}+{tan}\frac{\beta}{\mathrm{2}}}{\mathrm{1}−{tan}\frac{\alpha}{\mathrm{2}}.{tan}\frac{\beta}{\mathrm{2}}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}×\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} }}{\mathrm{1}+\left(\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)\left(\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)}{\left(\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\left(\frac{\mathrm{2}{b}}{{a}+{c}}\right)\left(\mathrm{1}−\frac{{c}−{a}}{{c}+{a}}\right)}{\left(\mathrm{1}−\frac{{c}−{a}}{{c}+{a}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{b}}{{c}+{a}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\frac{\mathrm{4}{b}×\mathrm{2}{a}}{\left({c}+{a}\right)^{\mathrm{2}} }}{\frac{\mathrm{4}{a}^{\mathrm{2}} }{\left({c}+{a}\right)^{\mathrm{2}} }+\frac{\mathrm{4}{b}^{\mathrm{2}} }{\left({c}+{a}\right)^{\mathrm{2}} }}=\frac{\mathrm{8}{ab}}{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right){tan}\left(\alpha+\beta\right)={tan}\mathrm{2}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)=\frac{\mathrm{2}{tan}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)}{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{\alpha+\beta}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{2}\left(\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} }\right)}{\mathrm{1}−\left(\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} }\right)^{\mathrm{2}} }=\frac{\mathrm{2}\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)\left(\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)}{\left(\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\left(\frac{\mathrm{2}{b}}{{a}+{c}}\right)\left(\mathrm{1}−\frac{{c}−{a}}{{c}+{a}}\right)}{\left(\mathrm{1}−\frac{{c}−{a}}{{c}+{a}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{2}{b}}{{c}+{a}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}{b}×\mathrm{2}{a}}{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} }=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){cos}\left(\alpha−\beta\right)=\frac{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{\alpha−\beta}{\mathrm{2}}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{\alpha−\beta}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{1}−\left(\frac{{t}_{\mathrm{1}} −{t}_{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{t}_{\mathrm{1}} −{t}_{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}{t}_{\mathrm{1}} {t}_{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{t}_{\mathrm{1}} {t}_{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{1}+\frac{{c}−{a}}{{c}+{a}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{2}{b}}{{c}+{a}}\right)^{\mathrm{2}} +\mathrm{4}.\frac{{c}−{a}}{{c}+{a}}}{\left(\mathrm{1}+\frac{{c}−{a}}{{c}+{a}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{b}}{{c}+{a}}\right)^{\mathrm{2}} −\mathrm{4}.\left(\frac{{c}−{a}}{{c}+{a}}\right)} \\ $$$$=\frac{\frac{\mathrm{4}{c}^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} +\mathrm{4}\left({c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\left({c}+{a}\right)^{\mathrm{2}} }}{\frac{\mathrm{4}{c}^{\mathrm{2}} +\mathrm{4}{b}^{\mathrm{2}} −\mathrm{4}\left({c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\left({c}+{a}\right)^{\mathrm{2}} }} \\ $$$$=\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{c}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}{c}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$
Commented by liki last updated on 13/Apr/20
$$…{thank}\:{you}\:{so}\:{much}\:{sir}\:{blessed} \\ $$
Commented by TANMAY PANACEA. last updated on 13/Apr/20
$${most}\:{welcome} \\ $$