Question Number 89194 by ajfour last updated on 16/Apr/20
Commented by ajfour last updated on 16/Apr/20
$${Given}\:{parabola}\:{is}\:{y}={x}^{\mathrm{2}} \:,\:{and} \\ $$$${if}\:\:{OB}={AB}={BC}\:=\:{s}\:,\:{find}\:{s}. \\ $$
Commented by john santu last updated on 16/Apr/20
$${let}\:{A}\left({a},{a}^{\mathrm{2}} \right)\:,\:{B}\left(\mathrm{0},{s}\right)\:,{C}\left(\mathrm{0},\mathrm{2}{s}\right) \\ $$$$\sqrt{{a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{s}\right)^{\mathrm{2}} }\:=\:{s}\: \\ $$$${a}^{\mathrm{2}} \:+\:{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {s}\:+\:{s}^{\mathrm{2}} \:=\:{s}^{\mathrm{2}} \\ $$$${s}\:=\:\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}.\:\left({i}\right) \\ $$$${i}\:{think}\:{the}\:{question}\:{not}\:{complete} \\ $$
Answered by mr W last updated on 16/Apr/20
$${B}\left(\mathrm{0},{s}\right) \\ $$$${C}\left(\mathrm{0},\mathrm{2}{s}\right) \\ $$$${D}\left(−\sqrt{\mathrm{2}{s}},\mathrm{2}{s}\right) \\ $$$${A}\left({a},{a}^{\mathrm{2}} \right) \\ $$$${eqn}.\:{of}\:{DBA}: \\ $$$$\frac{{y}−{s}}{{x}}=\frac{\mathrm{2}{s}−{s}}{−\sqrt{\mathrm{2}{s}}} \\ $$$$\Rightarrow{y}={s}−\frac{\sqrt{\mathrm{2}{s}}}{\mathrm{2}}{x} \\ $$$${a}^{\mathrm{2}} ={s}−\frac{\sqrt{\mathrm{2}{s}}}{\mathrm{2}}{a} \\ $$$${a}^{\mathrm{2}} +\frac{\sqrt{\mathrm{2}{s}}}{\mathrm{2}}{a}−{s}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\sqrt{\mathrm{2}{s}}}{\mathrm{2}}+\frac{\mathrm{3}\sqrt{\mathrm{2}{s}}}{\mathrm{2}}\right)=\frac{\sqrt{\mathrm{2}{s}}}{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} +\left({s}−{a}^{\mathrm{2}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\frac{{s}}{\mathrm{2}}+\left({s}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 16/Apr/20
$${exactly}\:{the}\:{same}\:{as}\:{by}\:{me}\:{before}\:{i} \\ $$$${checked}\:{on}\:{graph}.\:{i}\:{misread}\:\sqrt{\mathrm{2}{s}}\:{as}\:\sqrt{\mathrm{2}}{s}. \\ $$
Commented by ajfour last updated on 16/Apr/20
$${Correct}\:{sir},\:{Perfect}! \\ $$
Commented by mr W last updated on 16/Apr/20
Commented by ajfour last updated on 16/Apr/20
$${i}\:{also}\:{solved},\:{got}\:{s}=\:\mathrm{2}\pm\sqrt{\mathrm{2}}\:,\:{but}\:{i} \\ $$$${dint}\:{like}\:{two}\:{values},\:{so}\:{checked}, \\ $$$${found}\:{some}\:{error},\:{then}\:{got}\:\frac{\mathrm{2}}{\mathrm{3}}. \\ $$$${what}\:{a}\:{coincidence},\:{Sir}! \\ $$