Question Number 89281 by ajfour last updated on 16/Apr/20
Commented by ajfour last updated on 17/Apr/20
$${Both}\:{parabolas}\:{have}\:{same}\:{shape}. \\ $$$${If}\:{equation}\:{of}\:{one}\:{is}\:{y}={x}^{\mathrm{2}} , \\ $$$${and}\:{the}\:{inscribed}\:{triangle}\:{is} \\ $$$${eqiuilateral},\:{find}\:{the}\:{eq}.\:{of}\:{the} \\ $$$${other}\:{parabola}. \\ $$$${Find}\:{also}\:{the}\:{triangle}\:{side}. \\ $$
Commented by ajfour last updated on 17/Apr/20
$${MjS}\:{Sir},\:{mrW}\:{Sir}\:,\:{please}\:{solve}. \\ $$
Answered by mr W last updated on 17/Apr/20
$${say}\:{the}\:{side}\:{length}\:{of}\:{the}\:{equilateral} \\ $$$${triangle}\:{is}\:{s}. \\ $$$${for}\:{a}\:{given}\:{s},\:{the}\:{coordinates}\:{of}\:{points} \\ $$$${A},{B},\:{C}\:{can}\:{be}\:{determined}\:{according} \\ $$$${to}\:{the}\:{method}\:{from}\:{ajfour}\:{sir}\:{in} \\ $$$${Q}\mathrm{62938}. \\ $$
Commented by mr W last updated on 24/Apr/20
$${coordinates}\:{of}\:{the}\:{centroid}\:{G}\left({h},{k}\right): \\ $$$${h}=\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${k}=\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{s}^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{1}}{\mathrm{4}}\geqslant\mathrm{0}\:\Rightarrow\boldsymbol{{s}}\geqslant\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${the}\:{x}−{coordinates}\:{of}\:{points}\:{A},{B},{C} \\ $$$${can}\:{be}\:{calculated}\:{as}\:{roots}\:{of}\:{following} \\ $$$${equation}: \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${with} \\ $$$${a}=−\mathrm{3}{h} \\ $$$${b}=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{3}{h}^{\mathrm{2}} −{k}\right) \\ $$$${c}=\frac{\mathrm{1}}{\mathrm{3}{h}}\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right) \\ $$$$ \\ $$$${the}\:{equation}\:{can}\:{be}\:{reformed}\:{to}: \\ $$$${z}^{\mathrm{3}} +\mathrm{3}{pz}+\mathrm{2}{q}=\mathrm{0} \\ $$$${with} \\ $$$${x}={z}+{h} \\ $$$${p}=\frac{{h}^{\mathrm{2}} −{k}}{\mathrm{2}} \\ $$$${q}=\frac{{h}\left(\mathrm{5}{h}^{\mathrm{2}} −\mathrm{3}{k}\right)}{\mathrm{4}}+\frac{\mathrm{3}{h}^{\mathrm{2}} +\mathrm{3}{k}^{\mathrm{2}} −{s}^{\mathrm{2}} }{\mathrm{18}{h}} \\ $$$$ \\ $$$${the}\:{roots}\:{are} \\ $$$${x}_{{i}} =\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\:\sqrt{−{p}^{\mathrm{3}} }}+\frac{\mathrm{2}{i}\pi}{\mathrm{3}}\right)+{h} \\ $$$$\left({i}=\mathrm{0},\mathrm{1},\mathrm{2}\:{for}\:{point}\:{A},{B},{C}\:{respectively}\right) \\ $$$$ \\ $$$${x}_{{A}} ={x}_{\mathrm{0}} =\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\:\sqrt{−{p}^{\mathrm{3}} }}\right)+{h} \\ $$$${x}_{{C}} ={x}_{\mathrm{2}} =\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\:\sqrt{−{p}^{\mathrm{3}} }}+\frac{\mathrm{4}\pi}{\mathrm{3}}\right)+{h} \\ $$
Commented by ajfour last updated on 18/Apr/20
$${Sir},\:{Q}.\mathrm{89415}\:{please}\:,\:{can}\:{you} \\ $$$${confirm}\:{just}\:{the}\:{answer}.. \\ $$
Commented by mr W last updated on 17/Apr/20
Commented by mr W last updated on 18/Apr/20
$${this}\:{solution}\:{was}\:{only}\:{possible}\:{due}\:{to} \\ $$$${your}\:{earlier}\:{wonderful}\:{work}.\:{therefore} \\ $$$${big}\:{thanks}\:{to}\:{you}\:{for}\:{the}\:{question}\:{and} \\ $$$${for}\:{the}\:{contribution}\:{to}\:{the}\:{solution}! \\ $$
Commented by mr W last updated on 17/Apr/20
Commented by mr W last updated on 18/Apr/20
$${since}\:{both}\:{parabolas}\:{have}\:{the}\:{same} \\ $$$${shape}\:{and}\:{the}\:{triangle}\:{is}\:{equilateral}, \\ $$$${the}\:{correlation}\:{between}\:{the}\:{second} \\ $$$${parabola}\:{and}\:{the}\:{triangle}\:{is}\:{the}\:{same} \\ $$$${as}\:{the}\:{correlation}\:{between}\:{the}\:{first} \\ $$$${parabola}\:{and}\:{the}\:{triangle}.\:{the}\:{second} \\ $$$${parabola}\:{is}\:{just}\:{the}\:{first}\:{parabola} \\ $$$${after}\:{a}\:{rotation}\:{of}\:\mathrm{120}°\:{about}\:{the} \\ $$$${centroid}\:{G}\:{of}\:{the}\:{triangle}.\:{and}\:{the} \\ $$$${point}\:{A}\:{is}\:{rotated}\:{to}\:{the}\:{position} \\ $$$${of}\:{point}\:{C},\:{point}\:{B}\:{to}\:{the}\:{position}\:{of} \\ $$$${point}\:{A},\:{point}\:{C}\:{to}\:{the}\:{position}\:{of} \\ $$$${point}\:{B}. \\ $$$$ \\ $$$${from}\:{Q}\mathrm{55613}\:{we}\:{know}:\:{when}\:{a}\:{curve} \\ $$$${y}={f}\left({x}\right)\:{is}\:{rotated}\:{about}\:{the}\:{point}\:\left({h},{k}\right) \\ $$$${by}\:{an}\:{angle}\:\theta\:\left({clockwise}\:+\right),\:{it}\:{becomes} \\ $$$${the}\:{curce}\:{v}={f}\left({u}\right)\:{with} \\ $$$${u}=\left({x}−{h}\right)\:\mathrm{cos}\:\theta−\left({y}−{k}\right)\:\mathrm{sin}\:\theta+{h} \\ $$$${v}=\left({x}−{h}\right)\:\mathrm{sin}\:\theta+\left({y}−{k}\right)\:\mathrm{cos}\:\theta+{k} \\ $$$$ \\ $$$${in}\:{current}\:{case}: \\ $$$$\theta=\mathrm{120}° \\ $$$${from}\:{y}={x}^{\mathrm{2}} \:{we}\:{get}\:{then} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}−{h}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left({y}−{k}\right)+{k}\:= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[−\frac{\mathrm{1}}{\mathrm{2}}\left({x}−{h}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({y}−{k}\right)+{h}\right]^{\mathrm{2}} \\ $$$${or} \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}\left({x}−{h}\right)−\mathrm{2}{y}+\mathrm{3}{k}=\left[{x}−\mathrm{2}{h}+\sqrt{\mathrm{3}}\left({y}−{k}\right)\right]^{\mathrm{2}} \\ $$$$ \\ $$$${this}\:{is}\:{the}\:{equation}\:{of}\:{the}\:{second} \\ $$$${parabola}\:{with} \\ $$$${h}=\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${k}=\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${but}\:{there}\:{is}\:{an}\:{other}\:{condition}: \\ $$$${both}\:{parabolas}\:{should}\:{touch}\:{each}\:{other} \\ $$$${at}\:{point}\:{C}. \\ $$
Commented by mr W last updated on 17/Apr/20
Commented by ajfour last updated on 18/Apr/20
hence side of triangle, remains to be obtained..
side of triangle under the tangency condition, must be unique.
Commented by mr W last updated on 24/Apr/20
$${that}\:{means}:\:{when}\:{the}\:{tangent}\:{line} \\ $$$${of}\:{parabola}\:{at}\:{point}\:{A}\:{is}\:{rotated}\:{by} \\ $$$$\mathrm{120}°,\:{it}\:{should}\:{coincide}\:{with}\:{the} \\ $$$${tangent}\:{line}\:{of}\:{the}\:{parabola}\:{at}\:{point}\:{C}. \\ $$$${i}.{e}.\:\theta_{{A}} =\theta_{{C}} +\mathrm{120}° \\ $$$$ \\ $$$${at}\:{point}\:{A}: \\ $$$$\mathrm{tan}\:\theta_{{A}} =\frac{{dy}}{{dx}}=\mathrm{2}{x}_{{A}} \\ $$$${at}\:{point}\:{C}: \\ $$$$\mathrm{tan}\:\theta_{{C}} =\frac{{dy}}{{dx}}=\mathrm{2}{x}_{{C}} \\ $$$$\mathrm{tan}\:\theta_{{A}} =\mathrm{tan}\:\left(\theta_{{C}} +\mathrm{120}°\right)=\frac{\mathrm{tan}\:\theta_{{C}} −\sqrt{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{3}}\:\mathrm{tan}\:\theta_{{C}} } \\ $$$$\Rightarrow\:\mathrm{2}{x}_{{A}} =\frac{\mathrm{2}{x}_{{C}} −\sqrt{\mathrm{3}}}{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\:{x}_{{C}} }\:\:\:\:\:\:\:…\left({I}\right) \\ $$$${with} \\ $$$${x}_{{A}} =\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\:\sqrt{−{p}^{\mathrm{3}} }}\right)+{h} \\ $$$${x}_{{C}} =\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\:\sqrt{−{p}^{\mathrm{3}} }}+\frac{\mathrm{4}\pi}{\mathrm{3}}\right)+{h} \\ $$$${p}=\frac{{h}^{\mathrm{2}} −{k}}{\mathrm{2}} \\ $$$${q}=\frac{{h}\left(\mathrm{5}{h}^{\mathrm{2}} −\mathrm{3}{k}\right)}{\mathrm{4}}+\frac{\mathrm{3}{h}^{\mathrm{2}} +\mathrm{3}{k}^{\mathrm{2}} −{s}^{\mathrm{2}} }{\mathrm{18}{h}} \\ $$$$ \\ $$$${we}\:{get}\:{from}\:{eqn}.\:\left({I}\right): \\ $$$${s}\approx\mathrm{3}.\mathrm{779421} \\ $$
Commented by mr W last updated on 18/Apr/20
Commented by ajfour last updated on 18/Apr/20
$${But}\:{afterall}\:{its}\:{you}\:{who}\:{solved} \\ $$$${it}\:{really},\:{i}\:{was}\:{very}\:{puzzled},\:{so} \\ $$$${thank}\:{you}\:{enormously}\:{Sir}. \\ $$