Question-89324 Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 89324 by 174 last updated on 16/Apr/20 Commented by mathmax by abdo last updated on 16/Apr/20 letf(a)=∫0π2ln(a+cos2x)dxwitha>0f′(a)=∫0π2dxa+cos2xdx=∫0π2dxa+11+tan2x=∫0π21+tan2xa+atan2x+1dx=tanx=t∫0∞1+t2at2+a+1dt1+t2=∫0∞dtat2+a+1=1a∫0∞dtt2+a+1a=t=a+1au1a∫0∞1a+1a(1+u2)×a+1adu=1aa+1×π2=π2aa+1⇒f(a)=π2∫daaa+1wehave∫daaa+1=a=z∫2zdzzz2+1=2∫dzz2+1=2ln(z+1+z2)+c=2ln(a+1+a)+c⇒f(a)=πln(a+a+1)+Clima→0+f(a)=C=2∫0π2ln(cosx)dx=2(−π2ln(2))=−πln2⇒f(a)=πln(a+a+1)−πln(2)∫0π2ln(1+cos2x)dx=f(1)=πln(1+2)−πln(2)=π{ln(1+2)−ln(2)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-2-1-5-x-dx-Next Next post: Question-89327 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.