Menu Close

Question-89324




Question Number 89324 by 174 last updated on 16/Apr/20
Commented by mathmax by abdo last updated on 16/Apr/20
  let  f(a)=∫_0 ^(π/2) ln(a+cos^2 x)dx  with a>0  f^′ (a) =∫_0 ^(π/2)   (dx/(a +cos^2 x))dx =∫_0 ^(π/2)   (dx/(a+(1/(1+tan^2 x))))  =∫_0 ^(π/2)  ((1+tan^2 x)/(a +atan^2 x +1))dx =_(tanx =t)    ∫_0 ^∞   ((1+t^2 )/(at^2  +a+1))  (dt/(1+t^2 ))  =∫_0 ^∞  (dt/(at^2  +a+1)) =(1/a)∫_0 ^∞   (dt/(t^2  +((a+1)/a))) =_(t =(√((a+1)/a))u)   (1/a)∫_0 ^∞    (1/(((a+1)/a)(1+u^2 )))×(√((a+1)/a))du  =(1/( (√a)(√(a+1))))×(π/2) =(π/(2(√a)(√(a+1)))) ⇒f(a) =(π/2)∫ (da/( (√a)(√(a+1))))  we have  ∫  (da/( (√a)(√(a+1)))) =_((√a)=z)     ∫  ((2zdz)/(z(√(z^2 +1)))) =2 ∫ (dz/( (√(z^2  +1))))  =2ln(z+(√(1+z^2 )))  +c =2ln((√a)+(√(1+a))) +c  ⇒f(a) =πln((√a)+(√(a+1))) +C  lim_(a→0^+ )   f(a) =C =2∫_0 ^(π/2) ln(cosx)dx =2(−(π/2)ln(2))  =−πln2 ⇒f(a) =πln((√a)+(√(a+1)))−πln(2)  ∫_0 ^(π/2) ln(1+cos^2 x)dx =f(1) =πln(1+(√2))−πln(2)  =π{ln(1+(√2))−ln(2)}
letf(a)=0π2ln(a+cos2x)dxwitha>0f(a)=0π2dxa+cos2xdx=0π2dxa+11+tan2x=0π21+tan2xa+atan2x+1dx=tanx=t01+t2at2+a+1dt1+t2=0dtat2+a+1=1a0dtt2+a+1a=t=a+1au1a01a+1a(1+u2)×a+1adu=1aa+1×π2=π2aa+1f(a)=π2daaa+1wehavedaaa+1=a=z2zdzzz2+1=2dzz2+1=2ln(z+1+z2)+c=2ln(a+1+a)+cf(a)=πln(a+a+1)+Clima0+f(a)=C=20π2ln(cosx)dx=2(π2ln(2))=πln2f(a)=πln(a+a+1)πln(2)0π2ln(1+cos2x)dx=f(1)=πln(1+2)πln(2)=π{ln(1+2)ln(2)}

Leave a Reply

Your email address will not be published. Required fields are marked *