Menu Close

Question-89361




Question Number 89361 by 675480065 last updated on 17/Apr/20
Answered by mr W last updated on 17/Apr/20
Commented by mr W last updated on 17/Apr/20
sin α=(s/6)  (((√2)s)/(sin 45°))=(4/(sin (45°+α+45°)))=(4/(cos α))  2s=(4/(cos α))  ⇒cos α=(2/s)  ((s/6))^2 +((2/s))^2 =1  s^4 −36s^2 +144=0  area of square = s^2 =18−6(√5)≈4.58
$$\mathrm{sin}\:\alpha=\frac{{s}}{\mathrm{6}} \\ $$$$\frac{\sqrt{\mathrm{2}}{s}}{\mathrm{sin}\:\mathrm{45}°}=\frac{\mathrm{4}}{\mathrm{sin}\:\left(\mathrm{45}°+\alpha+\mathrm{45}°\right)}=\frac{\mathrm{4}}{\mathrm{cos}\:\alpha} \\ $$$$\mathrm{2}{s}=\frac{\mathrm{4}}{\mathrm{cos}\:\alpha} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{2}}{{s}} \\ $$$$\left(\frac{{s}}{\mathrm{6}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{{s}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${s}^{\mathrm{4}} −\mathrm{36}{s}^{\mathrm{2}} +\mathrm{144}=\mathrm{0} \\ $$$${area}\:{of}\:{square}\:=\:{s}^{\mathrm{2}} =\mathrm{18}−\mathrm{6}\sqrt{\mathrm{5}}\approx\mathrm{4}.\mathrm{58} \\ $$
Commented by 675480065 last updated on 17/Apr/20
thnks but i cant go further
$$\mathrm{thnks}\:\mathrm{but}\:\mathrm{i}\:\mathrm{cant}\:\mathrm{go}\:\mathrm{further} \\ $$
Commented by mr W last updated on 17/Apr/20
then you have selected a question   which is not suitable for your level  yet. we need here to apply sines law,  trigonometry, quadratic equation etc.
$${then}\:{you}\:{have}\:{selected}\:{a}\:{question}\: \\ $$$${which}\:{is}\:{not}\:{suitable}\:{for}\:{your}\:{level} \\ $$$${yet}.\:{we}\:{need}\:{here}\:{to}\:{apply}\:{sines}\:{law}, \\ $$$${trigonometry},\:{quadratic}\:{equation}\:{etc}. \\ $$
Commented by Tony Lin last updated on 17/Apr/20
this can be evaluated without trigometry
$${this}\:{can}\:{be}\:{evaluated}\:{without}\:{trigometry} \\ $$
Commented by Tony Lin last updated on 17/Apr/20
Commented by Tony Lin last updated on 17/Apr/20
△DBE∼△CDF  ⇒((√(6^2 −s^2 ))/6)=((2(√2))/( (√2)s))  12=s(√(36−s^2 ))  144=s^2 (36−s^2 )  s^4 −36s^2 +144=0  s^2 =18−6(√5)
$$\bigtriangleup{DBE}\sim\bigtriangleup{CDF} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{6}^{\mathrm{2}} −{s}^{\mathrm{2}} }}{\mathrm{6}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}{s}} \\ $$$$\mathrm{12}={s}\sqrt{\mathrm{36}−{s}^{\mathrm{2}} } \\ $$$$\mathrm{144}={s}^{\mathrm{2}} \left(\mathrm{36}−{s}^{\mathrm{2}} \right) \\ $$$${s}^{\mathrm{4}} −\mathrm{36}{s}^{\mathrm{2}} +\mathrm{144}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} =\mathrm{18}−\mathrm{6}\sqrt{\mathrm{5}} \\ $$
Commented by mr W last updated on 18/Apr/20
nice solution sir!
$${nice}\:{solution}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *