Question Number 89384 by nimnim last updated on 17/Apr/20
Commented by mathmax by abdo last updated on 17/Apr/20
$${let}\:{try}\:{another}\:{way}\:\:{we}\:{consider}\:{the}\:{diffeomorphism} \\ $$$$\left({u},{v}\right)\rightarrow\left({x},{y}\right)\:/{x}−{y}={u}\:{and}\:{x}+{y}\:={v}\:\Rightarrow{x}\:=\frac{{u}+{v}}{\mathrm{2}}\:{andy}=\frac{−{u}+{v}}{\mathrm{2}} \\ $$$$\Rightarrow\varphi\left({u},{v}\right)=\left(\varphi_{\mathrm{1}} \left({u},{v}\right),\varphi_{\mathrm{2}} \left({u},{v}\right)\right)=\left({x},{y}\right)=\left(\frac{{u}}{\mathrm{2}}+\frac{{v}}{\mathrm{2}},−\frac{{u}}{\mathrm{2}}+\frac{{v}}{\mathrm{2}}\right) \\ $$$${we}\:{have}\:\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\:\frac{\mathrm{1}}{\mathrm{2}}\leqslant{y}\leqslant\mathrm{1}\:\Rightarrow\mathrm{1}\leqslant{x}+{y}\leqslant\mathrm{2}\Rightarrow{v}\in\left[\mathrm{1},\mathrm{2}\right] \\ $$$$−\mathrm{1}\leqslant−{y}\leqslant−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}−{y}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{u}\in\left[−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$${M}_{{j}} \left(\varphi\right)=\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial{v}}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial{v}}}\end{pmatrix}=\:\:\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\end{pmatrix} \\ $$$$\mid{detM}_{{j}} \left(\varphi\right)\mid\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\int\int_{{D}} {f}\left({x},{y}\right){dxdy}\:=\int\int_{{w}} {fo}\varphi\left({u},{v}\right)\mid{J}_{\varphi} \mid{du}\:{dv} \\ $$$$\int\int_{{u}\in\left[−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right]{and}\:{v}\in\left[\mathrm{1},\mathrm{2}\right]} \:\:\:\:\frac{{u}}{{v}}×\frac{\mathrm{1}}{\mathrm{2}}{du}\:{dv} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\left(\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {udu}\right)\frac{{dv}}{{v}}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{2}} \left[\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dv}}{{v}}\:=\mathrm{0} \\ $$$$ \\ $$
Commented by Tony Lin last updated on 17/Apr/20
$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{x}−{y}}{{x}+{y}}{dxdy} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{2}{y}}{{x}+{y}}\right){dxdy} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \left\{\left[{x}−\mathrm{2}{aln}\mid{x}+{y}\mid\right]_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \right\}{dy} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{yln}\mid\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\mid\right){dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{2}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} {yln}\mid\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\mid{dy} \\ $$$${y}>\mathrm{0}\rightarrow{ln}\mid\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\mid={ln}\left(\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\right) \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} {yln}\left(\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\right){dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} {ln}\left(\frac{\frac{\mathrm{1}}{\mathrm{2}}+{y}}{\mathrm{1}+{y}}\right)\mid_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{y}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{3}{y}+\mathrm{1}}{dy} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}{ln}\left(\frac{\mathrm{512}}{\mathrm{243}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{y}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{3}{y}+\mathrm{1}}{dy} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}{ln}\left(\frac{\mathrm{512}}{\mathrm{243}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{y}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{y}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}{ln}\left(\frac{\mathrm{512}}{\mathrm{243}}\right)−\frac{\mathrm{1}}{\mathrm{8}}{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{4}}{\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{x}−{y}}{{x}+{y}}\:{dxdy}=\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$
Commented by nimnim last updated on 17/Apr/20
$${Thank}\:{you}\:{Sir}. \\ $$