Menu Close

Question-89415




Question Number 89415 by ajfour last updated on 17/Apr/20
Commented by ajfour last updated on 17/Apr/20
Ellipse:  (x^2 /4)+y^2 =1  And if  ∠OP A = 90° , Find eq.  of shown parabola.
Ellipse:x24+y2=1AndifOPA=90°,Findeq.ofshownparabola.
Commented by Tony Lin last updated on 17/Apr/20
let P(2cosθ,sinθ)  (2cosθ,sinθ)∙(2cosθ−2,sinθ)=0  3cos^2 θ−4cosθ+1=0  (3cosθ−1)(cosθ−1)=0  cosθ=(1/3) or 1(false)  ⇒P((2/3), ((2(√2))/3))  let parabola y=a(x−k)^2    { ((1=ak^2 )),((((2(√2))/3)=a((2/3)−k)^2 )) :}
letP(2cosθ,sinθ)(2cosθ,sinθ)(2cosθ2,sinθ)=03cos2θ4cosθ+1=0(3cosθ1)(cosθ1)=0cosθ=13or1(false)P(23,223)letparabolay=a(xk)2{1=ak2223=a(23k)2
Commented by ajfour last updated on 17/Apr/20
this cannot be eq. of the required  parabola, please solve again, Sir.
thiscannotbeeq.oftherequiredparabola,pleasesolveagain,Sir.
Commented by Tony Lin last updated on 17/Apr/20
⇒ { ((a=(9/4)+(3/( (√2)))−((3(√3))/( (2)^(1/4) )))),((k=(2+((4(√2))/3))(3+(√(6(√2)))))) :}  ⇒y=((9/4)+(3/( (√2)))−((3(√3))/( (2)^(1/4) ))){x−(2+((4(√2))/3))(3+(√(6(√2))))}^2
{a=94+323324k=(2+423)(3+62)y=(94+323324){x(2+423)(3+62)}2
Answered by mr W last updated on 18/Apr/20
(x^2 /4)+y^2 =1  P(2 cos θ, sin θ)  (2 cos θ)^2 +sin^2  θ+4(1−cos θ)^2 +sin^2  θ=4  3 cos^2  θ−4 cos θ+1=0  (3 cos θ−1)(cos θ−1)=0  ⇒cos θ=(1/3) ⇒sin θ=((2(√2))/3)  P((2/3), ((2(√2))/3))  eqn. of parabola: say y=A(x−B)^2   1=AB^2    ...(i)  ((2(√2))/3)=A((2/3)−B)^2    ...(ii)  ((2/(3B))−1)^2 =((2(√2))/3)  B=(2/(3±(√(6(√2)))))  ⇒B=(2/(3+(√(6(√2)))))<(2/3)  A=(1/B^2 )    eqn. :  y=(1/B^2 )(x−B)^2 =((x/B)−1)^2   ⇒ y=[(((3+(√(6(√2))))x)/2)−1]^2
x24+y2=1P(2cosθ,sinθ)(2cosθ)2+sin2θ+4(1cosθ)2+sin2θ=43cos2θ4cosθ+1=0(3cosθ1)(cosθ1)=0cosθ=13sinθ=223P(23,223)eqn.ofparabola:sayy=A(xB)21=AB2(i)223=A(23B)2(ii)(23B1)2=223B=23±62B=23+62<23A=1B2eqn.:y=1B2(xB)2=(xB1)2y=[(3+62)x21]2
Commented by mr W last updated on 18/Apr/20
Commented by ajfour last updated on 19/Apr/20
Thanks, Sir.
Thanks,Sir.

Leave a Reply

Your email address will not be published. Required fields are marked *