Menu Close

Question-89580




Question Number 89580 by jagoll last updated on 18/Apr/20
Answered by $@ty@m123 last updated on 18/Apr/20
((BD)/(sin x))=((AD)/(sin {180−(x+84+42)}))  ((BD)/(sin x))=((AD)/(sin (54−x))) ...(1)  ((BD)/(sin 84))=((BC)/(sin {180−(84+42)}))  ((BD)/(sin 84))=((AD)/(sin 54)) ...(2)  From (1) &(2),  ((sin (54−x))/(sin x))=((sin 54)/(sin 84))  ((sin (54−x)+sin x)/(sin (54−x)−sin x))=((sin 54+sin 84)/(sin 54−sin 84))  ((2sin 27cos (27−x))/(2cos 27sin (27−x)))=((2sin 69cos 15)/(2cos 69(−sin 15)))  ((tan 27)/(tan (27−x)))=−((tan 69)/(tan 15))  tan (x−27)=((tan 27)/(tan 69))×tan 15  tan (x−27)≈tan 3^o   x≈30^o
$$\frac{{BD}}{\mathrm{sin}\:{x}}=\frac{{AD}}{\mathrm{sin}\:\left\{\mathrm{180}−\left({x}+\mathrm{84}+\mathrm{42}\right)\right\}} \\ $$$$\frac{{BD}}{\mathrm{sin}\:{x}}=\frac{{AD}}{\mathrm{sin}\:\left(\mathrm{54}−{x}\right)}\:…\left(\mathrm{1}\right) \\ $$$$\frac{{BD}}{\mathrm{sin}\:\mathrm{84}}=\frac{{BC}}{\mathrm{sin}\:\left\{\mathrm{180}−\left(\mathrm{84}+\mathrm{42}\right)\right\}} \\ $$$$\frac{{BD}}{\mathrm{sin}\:\mathrm{84}}=\frac{{AD}}{\mathrm{sin}\:\mathrm{54}}\:…\left(\mathrm{2}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:\&\left(\mathrm{2}\right), \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{54}−{x}\right)}{\mathrm{sin}\:{x}}=\frac{\mathrm{sin}\:\mathrm{54}}{\mathrm{sin}\:\mathrm{84}} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{54}−{x}\right)+\mathrm{sin}\:{x}}{\mathrm{sin}\:\left(\mathrm{54}−{x}\right)−\mathrm{sin}\:{x}}=\frac{\mathrm{sin}\:\mathrm{54}+\mathrm{sin}\:\mathrm{84}}{\mathrm{sin}\:\mathrm{54}−\mathrm{sin}\:\mathrm{84}} \\ $$$$\frac{\mathrm{2sin}\:\mathrm{27cos}\:\left(\mathrm{27}−{x}\right)}{\mathrm{2cos}\:\mathrm{27sin}\:\left(\mathrm{27}−{x}\right)}=\frac{\mathrm{2sin}\:\mathrm{69cos}\:\mathrm{15}}{\mathrm{2cos}\:\mathrm{69}\left(−\mathrm{sin}\:\mathrm{15}\right)} \\ $$$$\frac{\mathrm{tan}\:\mathrm{27}}{\mathrm{tan}\:\left(\mathrm{27}−{x}\right)}=−\frac{\mathrm{tan}\:\mathrm{69}}{\mathrm{tan}\:\mathrm{15}} \\ $$$$\mathrm{tan}\:\left({x}−\mathrm{27}\right)=\frac{\mathrm{tan}\:\mathrm{27}}{\mathrm{tan}\:\mathrm{69}}×\mathrm{tan}\:\mathrm{15} \\ $$$$\mathrm{tan}\:\left({x}−\mathrm{27}\right)\approx\mathrm{tan}\:\mathrm{3}^{\mathrm{o}} \\ $$$${x}\approx\mathrm{30}^{\mathrm{o}} \\ $$$$ \\ $$
Commented by jagoll last updated on 18/Apr/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *