Question Number 89596 by A8;15: last updated on 18/Apr/20
Commented by john santu last updated on 18/Apr/20
$$\sqrt{\frac{{x}}{\mathrm{1}−{x}}}\:=\:{t}\:\Rightarrow\:{x}\:=\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left.{dx}\:=\:\frac{\mathrm{2}{t}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:\right]\: \\ $$$$\int\:\frac{\mathrm{2}{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:= \\ $$$$\int\:{t}\left(\frac{{d}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\right)\:=\:\left[\:{by}\:{parts}\:\right] \\ $$$$−\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\:+\:\int\:\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\:=\: \\ $$$$−\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\:+\:\mathrm{tan}^{−\mathrm{1}} \left({t}\right)\:+\:{c}\:=\: \\ $$$$−\frac{\sqrt{\frac{{x}}{\mathrm{1}−{x}}}}{\frac{\mathrm{1}}{\mathrm{1}−{x}}}\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}}{\mathrm{1}−{x}}}\right)\:+\:{c}\: \\ $$$$−\sqrt{{x}−{x}^{\mathrm{2}} }\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}}{\mathrm{1}−{x}}}\right)\:+\:{c} \\ $$