Menu Close

Question-89618




Question Number 89618 by ajfour last updated on 18/Apr/20
Commented by ajfour last updated on 18/Apr/20
Find radii of the circles, if  △ABC is equilateral of side a.  (E is the center of smaller circle)
$${Find}\:{radii}\:{of}\:{the}\:{circles},\:{if} \\ $$$$\bigtriangleup{ABC}\:{is}\:{equilateral}\:{of}\:{side}\:{a}. \\ $$$$\left({E}\:{is}\:{the}\:{center}\:{of}\:{smaller}\:{circle}\right) \\ $$
Commented by ajfour last updated on 19/Apr/20
Any smooth way for this Q.  Sir ?
$${Any}\:{smooth}\:{way}\:{for}\:{this}\:{Q}. \\ $$$${Sir}\:? \\ $$
Answered by ajfour last updated on 18/Apr/20
eq. AB:   y_B =(((2r−R)x_B )/( (√(r^2 −(R−r)^2 ))))+2r−R  x_B ^2 +(2r−R)^2 (1+(x_B /( (√(r(2R−r))))))^2 =R^2   (x_B +(√(r(2R−r))))^2 +y_B ^2 =a^2 =1 (say)  eq. of BC:  y−y_B =((m+(√3))/(1−m(√3)))(x−x_B )  m=((2r−R)/( (√(r(2R−r)))))     ....(i)  ((∣y_B +R−r−(((m+(√3))/(1−m(√3))))x_B ∣)/( ((1+(((m+(√3))/(1−m(√3))))^2 ))^(1/) ))=r   ...(ii)  ((∣y_B −(((m+(√3))/(1−m(√3))))((√(r(2R−r)))+x_B )∣)/( ((1+(((m+(√3))/(1−m(√3))))^2 ))^(1/) ))=((√3)/2)                                                   .......(iii)  .....
$${eq}.\:{AB}:\:\:\:{y}_{{B}} =\frac{\left(\mathrm{2}{r}−{R}\right){x}_{{B}} }{\:\sqrt{{r}^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} }}+\mathrm{2}{r}−{R} \\ $$$${x}_{{B}} ^{\mathrm{2}} +\left(\mathrm{2}{r}−{R}\right)^{\mathrm{2}} \left(\mathrm{1}+\frac{{x}_{{B}} }{\:\sqrt{{r}\left(\mathrm{2}{R}−{r}\right)}}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\left({x}_{{B}} +\sqrt{{r}\left(\mathrm{2}{R}−{r}\right)}\right)^{\mathrm{2}} +{y}_{{B}} ^{\mathrm{2}} ={a}^{\mathrm{2}} =\mathrm{1}\:\left({say}\right) \\ $$$${eq}.\:{of}\:{BC}: \\ $$$${y}−{y}_{{B}} =\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−{m}\sqrt{\mathrm{3}}}\left({x}−{x}_{{B}} \right) \\ $$$${m}=\frac{\mathrm{2}{r}−{R}}{\:\sqrt{{r}\left(\mathrm{2}{R}−{r}\right)}}\:\:\:\:\:….\left({i}\right) \\ $$$$\frac{\mid{y}_{{B}} +{R}−{r}−\left(\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−{m}\sqrt{\mathrm{3}}}\right){x}_{{B}} \mid}{\:\sqrt[{}]{\mathrm{1}+\left(\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−{m}\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }}={r}\:\:\:…\left({ii}\right) \\ $$$$\frac{\mid{y}_{{B}} −\left(\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−{m}\sqrt{\mathrm{3}}}\right)\left(\sqrt{{r}\left(\mathrm{2}{R}−{r}\right)}+{x}_{{B}} \right)\mid}{\:\sqrt[{}]{\mathrm{1}+\left(\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−{m}\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….\left({iii}\right) \\ $$$$….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *