Question Number 89781 by mr W last updated on 19/Apr/20
Commented by jagoll last updated on 19/Apr/20
$$\mathrm{A}=\:\frac{\Delta\sqrt{\Delta}}{\mathrm{6}.\mathrm{a}^{\mathrm{2}} } \\ $$
Commented by mr W last updated on 29/Apr/20
$${how}\:{to}\:{quickly}\:{calculate}\:{the}\:{area}\: \\ $$$${bounded}\:{by}\:{two}\:{parabolas}\:{or}\:{by}\:{a} \\ $$$${parabola}\:{and}\:{a}\:{straight}\:{line} \\ $$$$ \\ $$$${recently}\:{a}\:{lot}\:{of}\:{such}\:{questions}\:{are} \\ $$$${asked}. \\ $$$${the}\:{general}\:{way}\:{to}\:{solve}\:{such}\:{questions} \\ $$$${is}\:{to}\:{apply}\:{intergral}\:{calculus}.\:{but}\:{in} \\ $$$${case}\:{of}\:{parabola},\:{we}\:{can}\:{find}\:{some} \\ $$$${short}\:{cuts}.\:{see}\:{also}\:{Q}\mathrm{88758}. \\ $$$$ \\ $$$${since}\:{a}\:{straight}\:{line}\:{is}\:{also}\:{a}\:{special} \\ $$$${parabola},\:{we}\:{will}\:{only}\:{look}\:{at}\:{the}\:{case} \\ $$$${with}\:{two}\:{parabolas}. \\ $$$$ \\ $$$${parabola}\:\mathrm{1}:\:{y}_{\mathrm{1}} ={a}_{\mathrm{1}} {x}^{\mathrm{2}} +{b}_{\mathrm{1}} {x}+{c}_{\mathrm{1}} \\ $$$${parabola}\:\mathrm{2}:\:{y}_{\mathrm{2}} ={a}_{\mathrm{2}} {x}^{\mathrm{2}} +{b}_{\mathrm{2}} {x}+{c}_{\mathrm{2}} \\ $$$$\Delta{y}={y}_{\mathrm{1}} −{y}_{\mathrm{2}} =\left({a}_{\mathrm{1}} −{a}_{\mathrm{2}} \right){x}^{\mathrm{2}} +\left({b}_{\mathrm{1}} −{b}_{\mathrm{2}} \right){x}+\left({c}_{\mathrm{1}} −{c}_{\mathrm{2}} \right) \\ $$$${or} \\ $$$$\Delta{y}={ax}^{\mathrm{2}} +{bx}+{c}\: \\ $$$${with}\:{a}={a}_{\mathrm{1}} −{a}_{\mathrm{2}} ,\:{b}={b}_{\mathrm{1}} −{b}_{\mathrm{2}} ,\:{c}={c}_{\mathrm{1}} −{c}_{\mathrm{2}} \\ $$$${we}\:{see}\:\Delta{y}\:{represents}\:{also}\:{a}\:{parabola}. \\ $$$$ \\ $$$${the}\:{area}\:{between}\:{both}\:{parabolas}\:{is}: \\ $$$$\left({we}\:{use}\:\mid\:\mid\:{since}\:{the}\:{integral}\:{can}\:{also}\right. \\ $$$${be}\:{negative},\:{only}\:{its}\:{absolute}\:{value}\:{is} \\ $$$$\left.{the}\:{area}\right) \\ $$$${A}=\mid\int_{{x}_{{P}} } ^{{x}_{{Q}} } \left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right){dx}\mid \\ $$$${A}=\mid\int_{{x}_{{P}} } ^{{x}_{{Q}} } \left(\Delta{y}\right){dx}\mid \\ $$$${A}=\mid\int_{{x}_{{P}} } ^{{x}_{{Q}} } \left({ax}^{\mathrm{2}} +{bx}+{c}\right){dx}\mid \\ $$$${A}=\mid\frac{{a}}{\mathrm{3}}\left({x}_{{Q}} ^{\mathrm{3}} −{x}_{{P}} ^{\mathrm{3}} \right)+\frac{{b}}{\mathrm{2}}\left({x}_{{Q}} ^{\mathrm{2}} −{x}_{{P}} ^{\mathrm{2}} \right)+{c}\left({x}_{{Q}} −{x}_{{P}} \right)\mid \\ $$$${A}=\mid\left\{\frac{{a}}{\mathrm{3}}\left({x}_{{Q}} ^{\mathrm{2}} +{x}_{{P}} {x}_{{Q}} +{x}_{{P}} ^{\mathrm{2}} \right)+\frac{{b}}{\mathrm{2}}\left({x}_{{Q}} +{x}_{{P}} \right)+{c}\right\}\left({x}_{{Q}} −{x}_{{P}} \right)\mid \\ $$$${A}=\mid\left\{\frac{{a}}{\mathrm{3}}\left[\left({x}_{{P}} +{x}_{{Q}} \right)^{\mathrm{2}} −{x}_{{P}} {x}_{{Q}} \right]+\frac{{b}}{\mathrm{2}}\left({x}_{{Q}} +{x}_{{P}} \right)+{c}\right\}\left({x}_{{Q}} −{x}_{{P}} \right)\mid \\ $$$$ \\ $$$${since}\:{x}_{{P}} \:{and}\:{x}_{{Q}} \:{are}\:{the}\:{roots}\:{of}\:{eqn}. \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${we}\:{have} \\ $$$${D}={b}^{\mathrm{2}} −\mathrm{4}{ac}\:\left({usually}\:{we}\:{use}\:\Delta\:{instead}\:{of}\:{D},\right. \\ $$$$\left.{here}\:{i}\:{use}\:{D}\:{because}\:{i}\:{have}\:{used}\:\Delta\:{above}\right) \\ $$$${x}_{{P}} +{x}_{{Q}} =−\frac{{b}}{{a}} \\ $$$${x}_{{P}} {x}_{{Q}} =\frac{{c}}{{a}} \\ $$$${x}_{{Q}} −{x}_{{P}} =\sqrt{\left({x}_{{Q}} +{x}_{{P}} \right)^{\mathrm{2}} −\mathrm{4}{x}_{{P}} {x}_{{Q}} }=\sqrt{\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{4}{c}}{{a}}}=\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{{a}}=\frac{\sqrt{\delta}}{{a}} \\ $$$${A}=\mid\left\{\frac{{a}}{\mathrm{3}}\left[\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} −\frac{{c}}{{a}}\right]+\frac{{b}}{\mathrm{2}}\left(−\frac{{b}}{{a}}\right)+{c}\right\}\frac{\sqrt{{D}}}{{a}}\mid \\ $$$${A}=\mid\left(−{b}^{\mathrm{2}} +\mathrm{4}{ac}\right)\frac{\sqrt{{D}}}{\mathrm{6}{a}^{\mathrm{2}} }\mid \\ $$$${A}=\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right)\frac{\sqrt{{D}}}{\mathrm{6}{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{A}=\frac{{D}\sqrt{{D}}}{\mathrm{6}{a}^{\mathrm{2}} }\:{with}\:{D}={b}^{\mathrm{2}} −\mathrm{4}{ac} \\ $$
Commented by mr W last updated on 19/Apr/20
$${i}\:{know}\:{jagoll}\:{sir}\:{uses}\:{this}\:{formula}.\: \\ $$$${here}\:{i}\:{just}\:{wanted}\:{to}\:{show}\:{how}\:{the} \\ $$$${formula}\:{comes}.\:{i}\:{think}\:{people}\:{apply} \\ $$$${better},\:{if}\:{they}\:{understand}.\:{that}'{s}\:{why} \\ $$$${i}\:{not}\:{only}\:{want}\:{to}\:{share}\:{the}\:{formula}, \\ $$$${but}\:{also}\:{to}\:{tell}\:{why}. \\ $$
Commented by jagoll last updated on 19/Apr/20
$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{thank}\:\mathrm{you} \\ $$
Commented by I want to learn more last updated on 19/Apr/20
$$\mathrm{It}\:\mathrm{really}\:\mathrm{helped}\:\mathrm{me}\:\mathrm{sir}.\:\mathrm{More}\:\mathrm{knowledge}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by M±th+et£s last updated on 19/Apr/20
$${this}\:{is}\:{verry}\:{usefull}\:{for}\:{me}\:{god}\:{bless} \\ $$$${you}\:{sir}. \\ $$
Commented by otchereabdullai@gmail.com last updated on 19/Apr/20
$$\mathrm{wonderful} \\ $$
Commented by Coronavirus last updated on 27/Jun/20
thanks so much sir