Menu Close

Question-89849




Question Number 89849 by ajfour last updated on 19/Apr/20
Commented by ajfour last updated on 19/Apr/20
Find maximum area of △PQR  in terms of ellipse parameters a,b.  or  find side of △PQR when  it is equilateral.
FindmaximumareaofPQRintermsofellipseparametersa,b.orfindsideofPQRwhenitisequilateral.
Answered by mr W last updated on 19/Apr/20
PART I  r=b  P ′(r cos θ, r sin θ)  Q ′(r sin θ, r cos θ)  A=(r^2 /2)tan ((π/4)+(θ/2))(cos θ−sin θ)^2   A=(r^2 /2)×((1+tan (θ/2))/(1−tan (θ/2)))(((1−tan^2  (θ/2)−2 tan (θ/2))/(1+tan^2  (θ/2))))^2   let t=tan (θ/2)  ⇒((2A)/r^2 )=((1+t)/(1−t))(((1−t^2 −2t)/(1+t^2 )))^2   (d/dt)(((2A)/r^2 ))=0  .....  ⇒t=−0.1526  ⇒θ=−17.3528°  A_(max) =((1.1538r^2 )/2)=0.5769r^2 =0.5769ab
PARTIr=bP(rcosθ,rsinθ)Q(rsinθ,rcosθ)A=r22tan(π4+θ2)(cosθsinθ)2A=r22×1+tanθ21tanθ2(1tan2θ22tanθ21+tan2θ2)2lett=tanθ22Ar2=1+t1t(1t22t1+t2)2ddt(2Ar2)=0..t=0.1526θ=17.3528°Amax=1.1538r22=0.5769r2=0.5769ab
Commented by mr W last updated on 19/Apr/20
Commented by ajfour last updated on 20/Apr/20
sir  why  x_(P′) =y_(Q′)   &  y_(P′) =x_(Q′)   and where does ′a′ go?
sirwhyxP=yQ&yP=xQandwheredoesago?
Commented by mr W last updated on 20/Apr/20
in case of circle we use the symmetry  for the max. area.  in case of ellipse we only need to  stretch the circle in x−direction in  ratio (a/r), i.e. (a/b).
incaseofcircleweusethesymmetryforthemax.area.incaseofellipseweonlyneedtostretchthecircleinxdirectioninratioar,i.e.ab.
Answered by mr W last updated on 19/Apr/20
Commented by mr W last updated on 19/Apr/20
PART II  the point R must lie on the green circle  with center at C.  let α=tan^(−1) (b/a), μ=(b/a)  AC=((AB)/(2 cos 30°))=(√((a^2 +b^2 )/3))  x_C =−a+AC  cos (30°−α)  x_C =−a+(√((a^2 +b^2 )/3)) (((√3)/2)×(a/( (√(a^2 +b^2 ))))+(1/2)×(b/( (√(a^2 +b^2 )))))  ⇒x_C =−(1/2) (a−(b/( (√3))))  y_C =AC sin (30°−α)=(√((a^2 +b^2 )/3))((1/2)×(a/( (√(a^2 +b^2 ))))−((√3)/2)×(b/( (√(a^2 +b^2 )))))  ⇒y_C =(1/2)((a/( (√3)))−b)    eqn. of green circle:  [x+(1/2)(a−(b/( (√3))))]^2 +[y−(1/2)((a/( (√3)))−b)]^2 =((a^2 +b^2 )/3)  or  x_R =−(1/2)(a−(b/( (√3))))+(√((a^2 +b^2 )/3)) cos θ  y_R =(1/2)((a/( (√3)))−b)+(√((a^2 +b^2 )/3)) sin θ  ⇒(x_R /a)=−(1/2)(1−(μ/( (√3))))+(√((1+μ^2 )/3)) cos θ  ⇒(y_R /a)=(1/2)((1/( (√3)))−μ)+(√((1+μ^2 )/3)) sin θ    eqn. of AR:  y=((a−(√3)b+2(√(a^2 +b^2 )) sin θ)/( (√3)a+b+2(√(a^2 +b^2 )) cos θ))(x+a)  y=((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ))(x+a)  intersection point P:  y_P =((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ))(x_P +a)  ((x_P /a))^2 +((y_P /b))^2 =1  (((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ)))^2 (1+(x_P /a))^2 =μ^2 [1−((x_P /a))^2 ]  (((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ)))^2 (1+(x_P /a))=μ^2 (1−(x_P /a))  ⇒(x_P /a)=((μ^2 −(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ)))^2 )/(μ^2 +(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ)))^2 ))  ⇒(y_P /a)=(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/( (√3)+μ+2(√(1+μ^2 )) cos θ)))(1+(x_P /a))  ((PR^2 )/a^2 )=((x_P /a)−(x_R /a))^2 +((y_P /a)−(y_R /a))^2     eqn. of BR:  ((y+b)/(y_R +b))=(x/x_R )  y=−b+((a+(√3)b+2(√(a^2 +b^2 )) sin θ)/(−(√3)a+b+2(√(a^2 +b^2 )) cos θ))x  y=−b+((1+(√3)μ+2(√(1+μ^2 )) sin θ)/(−(√3)+μ+2(√(1+μ^2 )) cos θ))x  intersection point Q:  y_Q =−b+((1+(√3)μ+2(√(1+μ^2 )) sin θ)/(−(√3)+μ+2(√(1+μ^2 )) cos θ))x_Q   x_Q =((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ))(y_Q +b)  ((x_Q /a))^2 +((y_Q /b))^2 =1  μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ((y_Q /a)+μ)^2 +((y_Q /a))^2 =μ^2   μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ((y_Q /a)+μ)=μ−(y_Q /a)  ⇒(y_Q /a)=((μ[1−μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ])/(1+μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ))  ⇒(x_Q /a)=(((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))((y_Q /a)+μ)  ((QR^2 )/a^2 )=((x_Q /a)−(x_R /a))^2 +((y_Q /a)−(y_R /a))^2     such that ΔPQR is equilateral,  PR=QR  ((PR^2 )/a^2 )=((QR^2 )/a^2 )
PARTIIthepointRmustlieonthegreencirclewithcenteratC.letα=tan1ba,μ=baAC=AB2cos30°=a2+b23xC=a+ACcos(30°α)xC=a+a2+b23(32×aa2+b2+12×ba2+b2)xC=12(ab3)yC=ACsin(30°α)=a2+b23(12×aa2+b232×ba2+b2)yC=12(a3b)eqn.ofgreencircle:[x+12(ab3)]2+[y12(a3b)]2=a2+b23orxR=12(ab3)+a2+b23cosθyR=12(a3b)+a2+b23sinθxRa=12(1μ3)+1+μ23cosθyRa=12(13μ)+1+μ23sinθeqn.ofAR:y=a3b+2a2+b2sinθ3a+b+2a2+b2cosθ(x+a)y=13μ+21+μ2sinθ3+μ+21+μ2cosθ(x+a)intersectionpointP:yP=13μ+21+μ2sinθ3+μ+21+μ2cosθ(xP+a)(xPa)2+(yPb)2=1(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2(1+xPa)2=μ2[1(xPa)2](13μ+21+μ2sinθ3+μ+21+μ2cosθ)2(1+xPa)=μ2(1xPa)xPa=μ2(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2μ2+(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2yPa=(13μ+21+μ2sinθ3+μ+21+μ2cosθ)(1+xPa)PR2a2=(xPaxRa)2+(yPayRa)2eqn.ofBR:y+byR+b=xxRy=b+a+3b+2a2+b2sinθ3a+b+2a2+b2cosθxy=b+1+3μ+21+μ2sinθ3+μ+21+μ2cosθxintersectionpointQ:yQ=b+1+3μ+21+μ2sinθ3+μ+21+μ2cosθxQxQ=3+μ+21+μ2cosθ1+3μ+21+μ2sinθ(yQ+b)(xQa)2+(yQb)2=1μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2(yQa+μ)2+(yQa)2=μ2μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2(yQa+μ)=μyQayQa=μ[1μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2]1+μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2xQa=(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)(yQa+μ)QR2a2=(xQaxRa)2+(yQayRa)2suchthatΔPQRisequilateral,PR=QRPR2a2=QR2a2
Commented by mr W last updated on 19/Apr/20
((x_P /a)−(x_R /a))^2 +((y_P /a)−(y_R /a))^2 =((x_Q /a)−(x_R /a))^2 +((y_Q /a)−(y_R /a))^2     from this eqn. we get θ for the  position of point R.
(xPaxRa)2+(yPayRa)2=(xQaxRa)2+(yQayRa)2fromthiseqn.wegetθforthepositionofpointR.
Commented by mr W last updated on 19/Apr/20
Commented by mr W last updated on 20/Apr/20
Commented by mr W last updated on 20/Apr/20
Commented by mr W last updated on 20/Apr/20
Commented by mr W last updated on 21/Apr/20
Answered by ajfour last updated on 20/Apr/20
Commented by ajfour last updated on 20/Apr/20
let  R(h,k)  Eq. AP:  y=((k(x+a))/(h+a))  b^2 x^2 +((k^2 (x+a)^2 a^2 )/((h+a)^2 ))=a^2 b^2   (h+a)^2 b^2 x^2 +k^2 a^2 (x+a)^2 =a^2 b^2 (h+a)^2   roots are x_P  , −a  ⇒  −ax_P = ((a^2 [a^2 k^2 −b^2 (h+a)^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))     x_P =((a[b^2 (h+a)^2 −a^2 k^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))   ...(I)  Eq. of BQ:    y=(((k+b)/h))x−b  b^2 h^2 x^2 +a^2 [(k+b)x−bh]^2 =a^2 b^2 h^2     roots are  x=0, x_Q     x_Q = ((2a^2 bh(k+b))/(b^2 h^2 +a^2 (k+b)^2 ))   ...(II)  ((((k+b)/h)−(k/(h+a)))/(1+(((k+b)/h))((k/(h+a)))))=(√3)    ....(III)  slope of PQ:     ((y_Q −y_P )/(x_P −x_Q ))=(((√3)−(k/(h+a)))/(1+(√3)((k/(h+a)))))    ...(IV)  let  (k/(h+a))=p  ,  ((k+b)/h)=q  x_P =((a[b^2 (h+a)^2 −a^2 k^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))     = ((a(b^2 −a^2 p^2 ))/(b^2 +a^2 p^2 ))    x_Q =((2a^2 bh(k+b))/(b^2 h^2 +a^2 (k+b)^2 ))         = ((2a^2 bq)/(b^2 +a^2 q^2 ))  y_P =p(x_P +a)=((p(2ab^2 ))/(b^2 +a^2 p^2 ))  y_Q =qx_Q −b = ((2a^2 bq^2 )/(b^2 +a^2 q^2 ))−b      =((b(a^2 q^2 −b^2 ))/(b^2 +a^2 q^2 ))   ((((b(a^2 q^2 −b^2 ))/(b^2 +a^2 q^2 ))−((p(2ab^2 ))/(b^2 +a^2 p^2 )))/(((a(b^2 −a^2 p^2 ))/(b^2 +a^2 p^2 ))−((2a^2 bq)/(b^2 +a^2 q^2 ))))=(((√3)−p)/(1+p(√3)))                                                 ......(i)  And   ((q−p)/(1+pq))=(√3)          .......(ii)  ((b(a^2 q^2 −b^2 )(b^2 +a^2 p^2 )−2ab^2 p(b^2 +a^2 q^2 ))/(a(b^2 −a^2 p^2 )(b^2 +a^2 q^2 )+2a^2 bq(b^2 +a^2 p^2 )))                 = (((√3)−p)/(1+p(√3)))   ....
letR(h,k)Eq.AP:y=k(x+a)h+ab2x2+k2(x+a)2a2(h+a)2=a2b2(h+a)2b2x2+k2a2(x+a)2=a2b2(h+a)2rootsarexP,aaxP=a2[a2k2b2(h+a)2]b2(h+a)2+k2a2xP=a[b2(h+a)2a2k2]b2(h+a)2+k2a2(I)Eq.ofBQ:y=(k+bh)xbb2h2x2+a2[(k+b)xbh]2=a2b2h2rootsarex=0,xQxQ=2a2bh(k+b)b2h2+a2(k+b)2(II)k+bhkh+a1+(k+bh)(kh+a)=3.(III)slopeofPQ:yQyPxPxQ=3kh+a1+3(kh+a)(IV)letkh+a=p,k+bh=qxP=a[b2(h+a)2a2k2]b2(h+a)2+k2a2=a(b2a2p2)b2+a2p2xQ=2a2bh(k+b)b2h2+a2(k+b)2=2a2bqb2+a2q2yP=p(xP+a)=p(2ab2)b2+a2p2yQ=qxQb=2a2bq2b2+a2q2b=b(a2q2b2)b2+a2q2b(a2q2b2)b2+a2q2p(2ab2)b2+a2p2a(b2a2p2)b2+a2p22a2bqb2+a2q2=3p1+p3(i)Andqp1+pq=3.(ii)b(a2q2b2)(b2+a2p2)2ab2p(b2+a2q2)a(b2a2p2)(b2+a2q2)+2a2bq(b2+a2p2)=3p1+p3.
Commented by mr W last updated on 20/Apr/20
you can get also a final eqn. with one  unknown in this way.
youcangetalsoafinaleqn.withoneunknowninthisway.
Commented by ajfour last updated on 21/Apr/20
I have a better way too, Sir,  but lets leave it here; you  solved it wonderfully, both  parts,  Thanks a lot!
Ihaveabetterwaytoo,Sir,butletsleaveithere;yousolveditwonderfully,bothparts,Thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *