Menu Close

Question-89852




Question Number 89852 by M±th+et£s last updated on 19/Apr/20
Answered by mr W last updated on 19/Apr/20
F_n =(1/( (√5)))(ϕ^n −ψ^n ) with  ϕ=((1+(√5))/2), ψ=((1−(√5))/2)=1−ϕ=−(1/ϕ)  x^n F_n =(1/( (√5)))[(xϕ)^n −(xψ)^n ]  Σ_(n=1) ^∞ x^n F_n =(1/( (√5)))[Σ_(n=1) ^∞ (xϕ)^n −Σ_(n=1) ^∞ (xψ)^n ]  =(1/( (√5)))[((xϕ)/(1−xϕ))−((xψ)/(1−xψ))]  =(x/( (√5)))[(ϕ/(1−xϕ))+(1/(ϕ+x))]=1  ⇒(ϕ/((1/x)−ϕ))+(1/((ϕ/x)+1))=(√5)  let t=(1/x)  ⇒(ϕ/(t−ϕ))+(1/(ϕt+1))=(√5)  t^2 +(((√5)(1−ϕ^2 )−1−ϕ^2 )/( (√5)ϕ))t−1=0  t^2 −((((√5)+1)ϕ+2)/( (√5)ϕ))t−1=0  t^2 −2t−1=0  ⇒t=1+(√2)      (x>0)  ⇒x=(1/t)=(1/(1+(√2)))=(√2)−1
Fn=15(φnψn)withφ=1+52,ψ=152=1φ=1φxnFn=15[(xφ)n(xψ)n]n=1xnFn=15[n=1(xφ)nn=1(xψ)n]=15[xφ1xφxψ1xψ]=x5[φ1xφ+1φ+x]=1φ1xφ+1φx+1=5lett=1xφtφ+1φt+1=5t2+5(1φ2)1φ25φt1=0t2(5+1)φ+25φt1=0t22t1=0t=1+2(x>0)x=1t=11+2=21
Commented by M±th+et£s last updated on 19/Apr/20
nice work thank you sir
niceworkthankyousir
Commented by mr W last updated on 19/Apr/20
answer correct?  i did it in hurry, not very carefully  and not checked.
answercorrect?ididitinhurry,notverycarefullyandnotchecked.
Commented by M±th+et£s last updated on 19/Apr/20
yes sir its correct
yessiritscorrect

Leave a Reply

Your email address will not be published. Required fields are marked *