Question Number 89852 by M±th+et£s last updated on 19/Apr/20

Answered by mr W last updated on 19/Apr/20
![F_n =(1/( (√5)))(ϕ^n −ψ^n ) with ϕ=((1+(√5))/2), ψ=((1−(√5))/2)=1−ϕ=−(1/ϕ) x^n F_n =(1/( (√5)))[(xϕ)^n −(xψ)^n ] Σ_(n=1) ^∞ x^n F_n =(1/( (√5)))[Σ_(n=1) ^∞ (xϕ)^n −Σ_(n=1) ^∞ (xψ)^n ] =(1/( (√5)))[((xϕ)/(1−xϕ))−((xψ)/(1−xψ))] =(x/( (√5)))[(ϕ/(1−xϕ))+(1/(ϕ+x))]=1 ⇒(ϕ/((1/x)−ϕ))+(1/((ϕ/x)+1))=(√5) let t=(1/x) ⇒(ϕ/(t−ϕ))+(1/(ϕt+1))=(√5) t^2 +(((√5)(1−ϕ^2 )−1−ϕ^2 )/( (√5)ϕ))t−1=0 t^2 −((((√5)+1)ϕ+2)/( (√5)ϕ))t−1=0 t^2 −2t−1=0 ⇒t=1+(√2) (x>0) ⇒x=(1/t)=(1/(1+(√2)))=(√2)−1](https://www.tinkutara.com/question/Q89862.png)
Commented by M±th+et£s last updated on 19/Apr/20

Commented by mr W last updated on 19/Apr/20

Commented by M±th+et£s last updated on 19/Apr/20
