Menu Close

Question-89980




Question Number 89980 by swizanjere@gmail.com last updated on 20/Apr/20
Commented by john santu last updated on 20/Apr/20
x^2 −3x−5=0  { (α),(β) :}  the eq with roots  { ((α−3)),((β−3)) :}  equal to : (x+3)^2 −3(x+3)−5 =0  x^2 +3x−5=0
$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{5}=\mathrm{0}\:\begin{cases}{\alpha}\\{\beta}\end{cases} \\ $$$${the}\:{eq}\:{with}\:{roots}\:\begin{cases}{\alpha−\mathrm{3}}\\{\beta−\mathrm{3}}\end{cases} \\ $$$${equal}\:{to}\::\:\left({x}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{3}\left({x}+\mathrm{3}\right)−\mathrm{5}\:=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{5}=\mathrm{0} \\ $$
Commented by john santu last updated on 20/Apr/20
a) tan x + cot x = (2/(sin 2x))  ((sin x)/(cos x)) + ((cos x)/(sin x)) = (1/(sin xcos x))  = (2/(2sin xcos x)) = (2/(sin 2x))
$$\left.{a}\right)\:\mathrm{tan}\:{x}\:+\:\mathrm{cot}\:{x}\:=\:\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:+\:\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}\mathrm{cos}\:{x}} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{2sin}\:{x}\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *