Question Number 90158 by I want to learn more last updated on 21/Apr/20
Commented by I want to learn more last updated on 21/Apr/20
$$\mathrm{The}\:\mathrm{question}\:\mathrm{is}\:\mathrm{prove}\:\mathrm{that} \\ $$
Commented by abdomathmax last updated on 22/Apr/20
$${we}\:{have}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left({x}\right){dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left(\mathrm{1}−{x}\right){dx}\:=\underset{\mathrm{0}} {\int}^{\mathrm{1}} {ln}\left(\frac{\pi}{{sin}\left(\pi{x}\right)}\right){dx} \\ $$$${but}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left(\mathrm{1}−{x}\right){dx}\:=_{\mathrm{1}−{x}={t}} \:\:{dt}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left({t}\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:={ln}\left(\pi\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx}\:=_{\pi{x}={t}} \:\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} {ln}\left({sint}\right)\:{dt} \\ $$$$=\frac{\mathrm{1}}{\pi}\:\left\{\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sint}\right){dt}\:+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:{ln}\left({sint}\right){dt}\rightarrow\left({t}=\frac{\pi}{\mathrm{2}}+{u}\right)\right\}\: \\ $$$$=\frac{\mathrm{1}}{\pi}\left\{\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sint}\right){dt}\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosu}\right){du}\right\} \\ $$$$=\frac{\mathrm{1}}{\pi}\left\{−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:=\frac{\mathrm{1}}{\pi}\left(−\pi{ln}\left(\mathrm{2}\right)\right)\right. \\ $$$$−{ln}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\:={ln}\left(\pi\right)+{ln}\left(\mathrm{2}\right)={ln}\left(\mathrm{2}\pi\right)\:\Rightarrow\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)={ln}\left(\sqrt{\mathrm{2}\pi}\right) \\ $$$$ \\ $$
Answered by maths mind last updated on 21/Apr/20
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\right){dx} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\Gamma\left({x}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\frac{\pi}{{sin}\left(\pi{x}\right)}\right){dx}={ln}\left(\sqrt{\pi}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx}..{E} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} {ln}\left({sin}\left({r}\right)\right){dr} \\ $$$$\int_{\mathrm{0}} ^{\pi} {ln}\left({sin}\left({r}\right)\right){dr}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{{sin}\left(\mathrm{2}{r}\right)}{\mathrm{2}}\right){dr} \\ $$$$=\int_{\mathrm{0}} ^{\pi} {ln}\left({sin}\left({x}\right)\right)\frac{{dx}}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} {ln}\left({sin}\left({x}\right)\right){dx}=−\pi{ln}\left(\mathrm{2}\right) \\ $$$${E}={ln}\left(\sqrt{\pi}\right)−\frac{\mathrm{1}}{\mathrm{2}\pi}.−\pi{ln}\left(\mathrm{2}\right)={ln}\left(\sqrt{\pi}\right)+{ln}\left(\sqrt{\mathrm{2}}\right) \\ $$$$={ln}\left(\sqrt{\mathrm{2}\pi}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by I want to learn more last updated on 21/Apr/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$