Question Number 90520 by ajfour last updated on 24/Apr/20

Commented by ajfour last updated on 24/Apr/20

Answered by mr W last updated on 25/Apr/20
![let μ=(b/a) let eqn. of parabola be y=A(x−h)^2 +B b=A(−h)^2 +B 0=A(a−h)^2 +B ⇒(B/A)=−(a−h)^2 ⇒A=(μ/(2h−a)) ⇒B=−((μ(a−h)^2 )/(2h−a)) b^2 x^2 +a^2 [A(x−h)^2 +B]^2 −a^2 b^2 =0 b^2 x^2 +a^2 A^2 x^4 +4h^2 a^2 A^2 x^2 +a^2 A^2 h^4 −4ha^2 A^2 x^3 +2h^2 a^2 A^2 x^2 −4h^3 a^2 A^2 x+2a^2 ABx^2 −2h2a^2 ABx+2a^2 ABh^2 +a^2 B^2 −a^2 b^2 =0 A^2 x^4 −4hA^2 x^3 +(6h^2 A^2 +2AB+μ^2 )x^2 −4hA(h^2 A+B)x+(A^2 h^4 +2ABh^2 +B^2 −b^2 )=0 x=0 is a root: ⇒A^2 h^4 +2ABh^2 +B^2 −b^2 =0 ⇒A^2 x^3 −4hA^2 x^2 +(6h^2 A^2 +2AB+μ^2 )x−4hA(h^2 A+B)=0 x=a,p,p are roots: x^3 −4hx^2 +(6h^2 +2(B/A)+(μ^2 /A))x−4h(h^2 +(B/A)) =(x−a)(x−p)^2 =x^3 −(a+2p)x^2 +(2a+p)px−ap^2 (a+2p)=4h ...(i) (2a+p)p=(6h^2 +2(B/A)+(μ^2 /A)) ...(ii) ap^2 =4h(h^2 +(B/A)) ...(iii) from (i) and (iii) we get ⇒16h^2 −8ah−a^2 =0 ⇒h=(((1+(√2))a)/4)](https://www.tinkutara.com/question/Q90603.png)
Commented by mr W last updated on 25/Apr/20

Commented by mr W last updated on 25/Apr/20

Commented by mr W last updated on 25/Apr/20

Commented by ajfour last updated on 25/Apr/20

Answered by ajfour last updated on 25/Apr/20
![let eq. of parabola be y=c(x−a)(x−(b/(ac))) ellipse: b^2 x^2 +a^2 y^2 =a^2 b^2 for their common points, which are x=0, x=a, x=p, x=p b^2 x^2 +a^2 c^2 (x−a)^2 (x−(b/(ac)))^2 =a^2 b^2 ⇒ a^2 c^2 x^4 −2a^2 c^2 (a+(b/(ac)))x^3 +a^2 c^2 [((2b)/c)+(b^2 /(a^2 c^2 ))+(a+(b/(ac)))^2 ]x^2 −2a^2 bc(a+(b/(ac)))x = 0 Now a+2p=2(a+(b/(ac))) and ap^2 =((2b)/c)(a+(b/(ac))) ⇒ a(a+((2b)/(ac)))^2 =((8b)/c)(a+(b/(ac))) ⇒ (a^2 c+2b)^2 =8b(a^2 c+b) or a^4 c^2 −4a^2 bc−4b^2 =0 ⇒ c=((2b)/a^2 )(1+(√2)) , hence eq. of parabola is y=((2b)/a^2 )(1+(√2))(x−a)[x−(b/a)∙(a^2 /(2b(1+(√2))))] or y=2(1+(√2))((b/a^2 ))(x−a){x−((a((√2)−1))/2)}](https://www.tinkutara.com/question/Q90672.png)
Commented by ajfour last updated on 25/Apr/20
