Menu Close

Question-90520




Question Number 90520 by ajfour last updated on 24/Apr/20
Commented by ajfour last updated on 24/Apr/20
If eq. of ellipse is (x^2 /a^2 )+(y^2 /b^2 )=1 ,  find equation of shown parabola.
Ifeq.ofellipseisx2a2+y2b2=1,findequationofshownparabola.
Answered by mr W last updated on 25/Apr/20
let μ=(b/a)  let eqn. of parabola be  y=A(x−h)^2 +B  b=A(−h)^2 +B  0=A(a−h)^2 +B  ⇒(B/A)=−(a−h)^2   ⇒A=(μ/(2h−a))  ⇒B=−((μ(a−h)^2 )/(2h−a))  b^2 x^2 +a^2 [A(x−h)^2 +B]^2 −a^2 b^2 =0  b^2 x^2 +a^2 A^2 x^4 +4h^2 a^2 A^2 x^2 +a^2 A^2 h^4 −4ha^2 A^2 x^3 +2h^2 a^2 A^2 x^2 −4h^3 a^2 A^2 x+2a^2 ABx^2 −2h2a^2 ABx+2a^2 ABh^2 +a^2 B^2 −a^2 b^2 =0  A^2 x^4 −4hA^2 x^3 +(6h^2 A^2 +2AB+μ^2 )x^2 −4hA(h^2 A+B)x+(A^2 h^4 +2ABh^2 +B^2 −b^2 )=0  x=0 is a root:  ⇒A^2 h^4 +2ABh^2 +B^2 −b^2 =0  ⇒A^2 x^3 −4hA^2 x^2 +(6h^2 A^2 +2AB+μ^2 )x−4hA(h^2 A+B)=0  x=a,p,p are roots:  x^3 −4hx^2 +(6h^2 +2(B/A)+(μ^2 /A))x−4h(h^2 +(B/A))  =(x−a)(x−p)^2   =x^3 −(a+2p)x^2 +(2a+p)px−ap^2   (a+2p)=4h    ...(i)  (2a+p)p=(6h^2 +2(B/A)+(μ^2 /A))   ...(ii)  ap^2 =4h(h^2 +(B/A))   ...(iii)  from (i) and (iii) we get  ⇒16h^2 −8ah−a^2 =0  ⇒h=(((1+(√2))a)/4)
letμ=baleteqn.ofparabolabey=A(xh)2+Bb=A(h)2+B0=A(ah)2+BBA=(ah)2A=μ2haB=μ(ah)22hab2x2+a2[A(xh)2+B]2a2b2=0b2x2+a2A2x4+4h2a2A2x2+a2A2h44ha2A2x3+2h2a2A2x24h3a2A2x+2a2ABx22h2a2ABx+2a2ABh2+a2B2a2b2=0A2x44hA2x3+(6h2A2+2AB+μ2)x24hA(h2A+B)x+(A2h4+2ABh2+B2b2)=0x=0isaroot:A2h4+2ABh2+B2b2=0A2x34hA2x2+(6h2A2+2AB+μ2)x4hA(h2A+B)=0x=a,p,pareroots:x34hx2+(6h2+2BA+μ2A)x4h(h2+BA)=(xa)(xp)2=x3(a+2p)x2+(2a+p)pxap2(a+2p)=4h(i)(2a+p)p=(6h2+2BA+μ2A)(ii)ap2=4h(h2+BA)(iii)from(i)and(iii)weget16h28aha2=0h=(1+2)a4
Commented by mr W last updated on 25/Apr/20
Commented by mr W last updated on 25/Apr/20
Commented by mr W last updated on 25/Apr/20
Commented by ajfour last updated on 25/Apr/20
Beautiful, Sir. Thanks a lot!
Beautiful,Sir.Thanksalot!
Answered by ajfour last updated on 25/Apr/20
let eq. of parabola be   y=c(x−a)(x−(b/(ac)))  ellipse:  b^2 x^2 +a^2 y^2 =a^2 b^2   for their common points,  which are x=0, x=a, x=p, x=p  b^2 x^2 +a^2 c^2 (x−a)^2 (x−(b/(ac)))^2 =a^2 b^2   ⇒ a^2 c^2 x^4 −2a^2 c^2 (a+(b/(ac)))x^3       +a^2 c^2 [((2b)/c)+(b^2 /(a^2 c^2 ))+(a+(b/(ac)))^2 ]x^2        −2a^2 bc(a+(b/(ac)))x = 0  Now    a+2p=2(a+(b/(ac)))    and      ap^2 =((2b)/c)(a+(b/(ac)))  ⇒  a(a+((2b)/(ac)))^2 =((8b)/c)(a+(b/(ac)))  ⇒  (a^2 c+2b)^2 =8b(a^2 c+b)  or      a^4 c^2 −4a^2 bc−4b^2 =0  ⇒   c=((2b)/a^2 )(1+(√2))   ,  hence     eq. of parabola is    y=((2b)/a^2 )(1+(√2))(x−a)[x−(b/a)∙(a^2 /(2b(1+(√2))))]  or  y=2(1+(√2))((b/a^2 ))(x−a){x−((a((√2)−1))/2)}
leteq.ofparabolabey=c(xa)(xbac)ellipse:b2x2+a2y2=a2b2fortheircommonpoints,whicharex=0,x=a,x=p,x=pb2x2+a2c2(xa)2(xbac)2=a2b2a2c2x42a2c2(a+bac)x3+a2c2[2bc+b2a2c2+(a+bac)2]x22a2bc(a+bac)x=0Nowa+2p=2(a+bac)andap2=2bc(a+bac)a(a+2bac)2=8bc(a+bac)(a2c+2b)2=8b(a2c+b)ora4c24a2bc4b2=0c=2ba2(1+2),henceeq.ofparabolaisy=2ba2(1+2)(xa)[xbaa22b(1+2)]ory=2(1+2)(ba2)(xa){xa(21)2}
Commented by ajfour last updated on 25/Apr/20

Leave a Reply

Your email address will not be published. Required fields are marked *